1. [1] A. Abd-Alrazaq, D. Alhuwail, M. Househ, M. Hamdi, and Z. Shah, "Top concerns of tweeters during the COVID-19 pandemic: infoveillance study," J Med Internet Res, vol. 22, no. 4, p. e19016, 2020. [
DOI:10.2196/19016] [
PMID] [
]
2. [2] M. Smith, D. A. Broniatowski, M. J. Paul, and M. Dredze, "Towards real-time measurement of public epidemic awareness: Monitoring influenza awareness through twitter," in AAAI spring symposium on observational studies through social media and other human-generated content, California, USA, 2016.
3. [3] P. Hitlin and K. Olmstead, "The science people see on social media. Pew Research Center," ed, pp. 142-148, 2018.
4. [4] A. R. Ahmad and H. R. Murad, "The impact of social media on panic during the COVID-19 pandemic in Iraqi Kurdistan: online questionnaire study," J Med Internet Res, vol. 22, no. 5, p. e19556, 2020. [
DOI:10.2196/19556] [
PMID] [
]
5. [5] J. Zarocostas, "How to fight an infodemic," Lancet, vol. 395, no. 10225, p. 676, 2020. [
DOI:10.1016/S0140-6736(20)30461-X] [
PMID]
6. [6] B. Ghanem, P. Rosso, and F. Rangel, "An emotional analysis of false information in social media and news articles," ACM T Internet Techn, vol. 20, no. 2, pp. 1-18, 2020. [
DOI:10.1145/3381750]
7. [7] K. P. Murphy, "Naive bayes classifiers," University of British Columbia, vol. 18, p. 60, 2006.
8. [8] M. Salathé and S. Khandelwal, "Assessing vaccination sentiments with online social media: implications for infectious disease dynamics and control," PLoS Comput Biol, vol. 7, no. 10, p. e1002199, 2011. [
DOI:10.1371/journal.pcbi.1002199] [
PMID] [
]
9. [9] Y. Lu, X. Hu, F. Wang, S. Kumar, H. Liu, and R. Maciejewski, "Visualizing social media sentiment in disaster scenarios," 24th International Conference on World Wide Web, 2015, USA, pp. 1211-1215, 2015. [
DOI:10.1145/2740908.2741720]
10. [10] K. Chakraborty, S. Bhattacharyya, and R. Bag, "A Survey of Sentiment Analysis from Social Media Data," IEEE Trans Comput Soc Syst, vol. 7, no. 2, pp. 450-464, 2020. [
DOI:10.1109/TCSS.2019.2956957]
11. [11] K. Rudra, S. Ghosh, N. Ganguly, P. Goyal, and S. Ghosh, "Extracting situational information from microblogs during disaster events: a classification-summarization approach," 24th ACM International on Conference on Information and Knowledge Management, 2015, Melbourne, Australia, pp. 583-592, 2015. [
DOI:10.1145/2806416.2806485]
12. [12] S. E. Vieweg, "Situational awareness in mass emergency: A behavioral and linguistic analysis of microblogged communications," University of Colorado at Boulder, 2012.
13. [13] Q. Zhang, F.-Y. Wang, D. Zeng, and T. Wang, "Understanding crowd-powered search groups: a social network perspective," PloS one, vol. 7, no. 6, p. e39749, 2012. [
DOI:10.1371/journal.pone.0039749] [
PMID] [
]
14. [14] B. Takahashi, E. C. Tandoc Jr, and C. Carmichael, "Communicating on Twitter during a disaster: An analysis of tweets during Typhoon Haiyan in the Philippines," Comput Hum Behav, vol. 50, pp. 392-398, 2015. [
DOI:10.1016/j.chb.2015.04.020]
15. [15] N. Bhuvana and I. A. Aram, "Facebook and Whatsapp as disaster management tools during the Chennai (India) floods of 2015," Int J Disast Risk Re, vol. 39, p. 101135, 2019. [
DOI:10.1016/j.ijdrr.2019.101135]
16. [16] L. Li et al., "Characterizing the propagation of situational information in social media during covid-19 epidemic: A case study on weibo," IEEE Trans Comput Soc Syst, vol. 7, no. 2, pp. 556-562, 2020. [
DOI:10.1109/TCSS.2020.2980007]
17. [17] A. Mosam, S. Goldstein, A. Erzse, A. Tugendhaft, and K. Hofman, "Building trust during COVID 19: Value-driven and ethical priority-setting," S Afr Med J, vol. 110, no. 6, pp. 0-0, 2020.
18. [18] A. Oksanen, M. Kaakinen, R. Latikka, I. Savolainen, N. Savela, and A. Koivula, "Regulation and Trust: 3-Month Follow-up Study on COVID-19 Mortality in 25 European Countries," JMIR Public Health and Surveillance, vol. 6, no. 2, p. e19218, 2020. [
DOI:10.2196/19218] [
PMID] [
]
19. [19] X. Ji, S. A. Chun, and J. Geller, "Monitoring public health concerns using twitter sentiment classifications," IEEE International Conference on Healthcare Informatics, 2013, Washington, DC, USA, pp. 335-344: IEEE, 2013. [
DOI:10.1109/ICHI.2013.47] [
]
20. [20] X. Ye, S. Li, X. Yang, and C. Qin, "Use of social media for the detection and analysis of infectious diseases in China," ISPRS Int J Geo-Inf, vol. 5, no. 9, p. 156, 2016. [
DOI:10.3390/ijgi5090156]
21. [21] L. Nemes and A. Kiss, "Social media sentiment analysis based on COVID-19," J Inf Telecommun, pp. 1-15, 2020. [
DOI:10.1080/24751839.2020.1790793]
22. [22] C. E. Lopez, M. Vasu, and C. Gallemore, "Understanding the perception of COVID-19 policies by mining a multilanguage Twitter dataset," arXiv preprint arXiv:2003.10359, 2020.
23. [23] D. Pastor-Escuredo and C. Tarazona, "Characterizing information leaders in Twitter during COVID-19 crisis," arXiv preprint arXiv:2005.07266, 2020.
24. [24] R. Kouzy et al., "Coronavirus goes viral: quantifying the COVID-19 misinformation epidemic on Twitter," Cureus, vol. 12, no. 3, 2020. [
DOI:10.7759/cureus.7255] [
PMID] [
]
25. [25] L. Singh et al., "A first look at COVID-19 information and misinformation sharing on Twitter," arXiv preprint arXiv:2003.13907, 2020.
26. [26] F. Pierri and S. Ceri, "False news on social media: a data-driven survey," ACM Sigmod Record, vol. 48, no. 2, pp. 18-27, 2019. [
DOI:10.1145/3377330.3377334]
27. [27] N. Ruchansky, S. Seo, and Y. Liu, "Csi: A hybrid deep model for fake news detection," ACM on Conference on Information and Knowledge Management, 2017, Singapore, pp. 797-806, 2017.
28. [28] K. Popat, S. Mukherjee, A. Yates, and G. Weikum, "Declare: Debunking fake news and false claims using evidence-aware deep learning," arXiv preprint arXiv:1809.06416, 2018. [
DOI:10.18653/v1/D18-1003]
29. [29] V. K. Vijayan, K. Bindu, and L. Parameswaran, "A comprehensive study of text classification algorithms," International Conference on Advances in Computing, Communications and Informatics (ICACCI), 2017, Udupi, Karnataka, India, pp. 1109-1113: IEEE, 2017. [
DOI:10.1109/ICACCI.2017.8125990]
30. [30] B. Liu, E. Blasch, Y. Chen, D. Shen, and G. Chen, "Scalable sentiment classification for big data analysis using naive bayes classifier," IEEE international conference on big data, 2013, Santa Clara, CA, USA, pp. 99-104: IEEE, 2013. [
DOI:10.1109/BigData.2013.6691740]
31. [31] E. Boiy, P. Hens, K. Deschacht, and M.-F. Moens, "Automatic Sentiment Analysis in On-line Text," in ELPUB, 2007, pp. 349-360, 2007.
32. [32] K. M. Leung, "Naive bayesian classifier," Polytechnic University Department of Computer Science/Finance and Risk Engineering, vol. 2007, pp. 123-156, 2007.
33. [33] W. Ramadhan, S. A. Novianty, and S. C. Setianingsih, "Sentiment analysis using multinomial logistic regression," International Conference on Control, Electronics, Renewable Energy and Communications (ICCREC), 2017, Piscataway, New Jersey, pp. 46-49: IEEE, 2017. [
DOI:10.1109/ICCEREC.2017.8226700]
34. [34] K. Kowsari, K. Jafari Meimandi, M. Heidarysafa, S. Mendu, L. Barnes, and D. Brown, "Text classification algorithms: A survey," Information, vol. 10, no. 4, p. 150, 2019. [
DOI:10.3390/info10040150]
35. [35] R. Plutchik, "A general psychoevolutionary theory of emotion," in Theories of emotion: Elsevier, 1980, pp. 3-33. [
DOI:10.1016/B978-0-12-558701-3.50007-7]
36. [36] S. Wu, Y. Liu, J. Wang, and Q. Li, "Sentiment analysis method based on Kmeans and online transfer learning," Comput. Mater. Continua, vol. 60, no. 3, pp. 1207-1222, 2019. [
DOI:10.32604/cmc.2019.05835]
37. [37] Y.-C. Liu, M. Liu, and X.-L. Wang, Application of self-organizing maps in text clustering: a review. chapter, 2012. [
DOI:10.5772/50618]
38. [38] V. Khachidze, T. Wang, S. Siddiqui, V. Liu, S. Cappuccio, and A. Lim, "Contemporary research on E-business technology and strategy," in Conference proceedings iCETS, 2012, p. 43: Springer. [
DOI:10.1007/978-3-642-34447-3]
39. [39] Y. P. Raykov, A. Boukouvalas, F. Baig, and M. A. Little, "What to do when k-means clustering fails: a simple yet principled alternative algorithm," PloS one, vol. 11, no. 9, p. e0162259, 2016. [
DOI:10.1371/journal.pone.0162259] [
PMID] [
]
40. [40] Y. Kou, H. Cui, and L. Xu, "The Application of SOM and K-Means Algorithms in Public Security Performance Analysis and Forecasting," International Conference on E-business Technology and Strategy, 2012, Tianjin, China, pp. 73-84: Springer, 2012. [
DOI:10.1007/978-3-642-34447-3_7]
41. [41] J. C. Bezdek, R. Ehrlich, and W. Full, "FCM: The fuzzy c-means clustering algorithm," Computers & geosciences, vol. 10, no. 2-3, pp. 191-203, 1984. [
DOI:10.1016/0098-3004(84)90020-7]