دوره 20، شماره 1 - ( 3-1402 )                   جلد 20 شماره 1 صفحات 158-145 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Abasi S, Amiri F. Sentiment Analysis of Social Media Posts in the Corona Crisis using two-stage Clustering. JSDP 2023; 20 (1) : 9
URL: http://jsdp.rcisp.ac.ir/article-1-1201-fa.html
عباسی سمیرا، امیری فاطمه. تحلیل احساس پست های شبکه های اجتماعی در بحران کرونا با استفاده از خوشه بندی دو مرحله ای. پردازش علائم و داده‌ها. 1402; 20 (1) :145-158

URL: http://jsdp.rcisp.ac.ir/article-1-1201-fa.html


دانشگاه صنعتی همدان
چکیده:   (879 مشاهده)
در بحران کرونا با طیف وسیعی از افکار، احساسات و نگرش ها در شبکه های اجتماعی مواجه ایم. دستیابی به درک جامعی از نگرش های جامعه نیازمند پردازش این داده‌هاست. هدف این پژوهش شناسایی ویژگی پیام هایی است که منجر به قطبیت های احساسی مختلف در شبکه های اجتماعی می شوند. در این پژوهش از پست های فارسی توییتر، اینستاگرام، تلگرام و کانال های خبری و تکنیک‌های پردازش زبان طبیعی استفاده شده است. در روش پیشنهادی این پژوهش، خوشه بندی دو مرحله ای مبتنی بر شبکه عصبی خود سازمانده و K-میانگین استفاده شده است. نتایج نشان دادند پست های حوزه سلامت و فرهنگ با قطبیت منفی، به احساساتی مانند ترس، تنفر، غم و خشم منجر شده است. پیام های مربوط به عملکرد هیجانی و نادرست مردم با احساس غم، ترس و استرس همراه است و امید در جامعه را کاهش داده است.
شماره‌ی مقاله: 9
متن کامل [PDF 706 kb]   (497 دریافت)    
نوع مطالعه: كاربردي | موضوع مقاله: مقالات پردازش متن
دریافت: 1399/10/4 | پذیرش: 1400/10/18 | انتشار: 1402/5/22 | انتشار الکترونیک: 1402/5/22

فهرست منابع
1. [1] A. Abd-Alrazaq, D. Alhuwail, M. Househ, M. Hamdi, and Z. Shah, "Top concerns of tweeters during the COVID-19 pandemic: infoveillance study," J Med Internet Res, vol. 22, no. 4, p. e19016, 2020. [DOI:10.2196/19016] [PMID] []
2. [2] M. Smith, D. A. Broniatowski, M. J. Paul, and M. Dredze, "Towards real-time measurement of public epidemic awareness: Monitoring influenza awareness through twitter," in AAAI spring symposium on observational studies through social media and other human-generated content, California, USA, 2016.
3. [3] P. Hitlin and K. Olmstead, "The science people see on social media. Pew Research Center," ed, pp. 142-148, 2018.
4. [4] A. R. Ahmad and H. R. Murad, "The impact of social media on panic during the COVID-19 pandemic in Iraqi Kurdistan: online questionnaire study," J Med Internet Res, vol. 22, no. 5, p. e19556, 2020. [DOI:10.2196/19556] [PMID] []
5. [5] J. Zarocostas, "How to fight an infodemic," Lancet, vol. 395, no. 10225, p. 676, 2020. [DOI:10.1016/S0140-6736(20)30461-X] [PMID]
6. [6] B. Ghanem, P. Rosso, and F. Rangel, "An emotional analysis of false information in social media and news articles," ACM T Internet Techn, vol. 20, no. 2, pp. 1-18, 2020. [DOI:10.1145/3381750]
7. [7] K. P. Murphy, "Naive bayes classifiers," University of British Columbia, vol. 18, p. 60, 2006.
8. [8] M. Salathé and S. Khandelwal, "Assessing vaccination sentiments with online social media: implications for infectious disease dynamics and control," PLoS Comput Biol, vol. 7, no. 10, p. e1002199, 2011. [DOI:10.1371/journal.pcbi.1002199] [PMID] []
9. [9] Y. Lu, X. Hu, F. Wang, S. Kumar, H. Liu, and R. Maciejewski, "Visualizing social media sentiment in disaster scenarios," 24th International Conference on World Wide Web, 2015, USA, pp. 1211-1215, 2015. [DOI:10.1145/2740908.2741720]
10. [10] K. Chakraborty, S. Bhattacharyya, and R. Bag, "A Survey of Sentiment Analysis from Social Media Data," IEEE Trans Comput Soc Syst, vol. 7, no. 2, pp. 450-464, 2020. [DOI:10.1109/TCSS.2019.2956957]
11. [11] K. Rudra, S. Ghosh, N. Ganguly, P. Goyal, and S. Ghosh, "Extracting situational information from microblogs during disaster events: a classification-summarization approach," 24th ACM International on Conference on Information and Knowledge Management, 2015, Melbourne, Australia, pp. 583-592, 2015. [DOI:10.1145/2806416.2806485]
12. [12] S. E. Vieweg, "Situational awareness in mass emergency: A behavioral and linguistic analysis of microblogged communications," University of Colorado at Boulder, 2012.
13. [13] Q. Zhang, F.-Y. Wang, D. Zeng, and T. Wang, "Understanding crowd-powered search groups: a social network perspective," PloS one, vol. 7, no. 6, p. e39749, 2012. [DOI:10.1371/journal.pone.0039749] [PMID] []
14. [14] B. Takahashi, E. C. Tandoc Jr, and C. Carmichael, "Communicating on Twitter during a disaster: An analysis of tweets during Typhoon Haiyan in the Philippines," Comput Hum Behav, vol. 50, pp. 392-398, 2015. [DOI:10.1016/j.chb.2015.04.020]
15. [15] N. Bhuvana and I. A. Aram, "Facebook and Whatsapp as disaster management tools during the Chennai (India) floods of 2015," Int J Disast Risk Re, vol. 39, p. 101135, 2019. [DOI:10.1016/j.ijdrr.2019.101135]
16. [16] L. Li et al., "Characterizing the propagation of situational information in social media during covid-19 epidemic: A case study on weibo," IEEE Trans Comput Soc Syst, vol. 7, no. 2, pp. 556-562, 2020. [DOI:10.1109/TCSS.2020.2980007]
17. [17] A. Mosam, S. Goldstein, A. Erzse, A. Tugendhaft, and K. Hofman, "Building trust during COVID 19: Value-driven and ethical priority-setting," S Afr Med J, vol. 110, no. 6, pp. 0-0, 2020.
18. [18] A. Oksanen, M. Kaakinen, R. Latikka, I. Savolainen, N. Savela, and A. Koivula, "Regulation and Trust: 3-Month Follow-up Study on COVID-19 Mortality in 25 European Countries," JMIR Public Health and Surveillance, vol. 6, no. 2, p. e19218, 2020. [DOI:10.2196/19218] [PMID] []
19. [19] X. Ji, S. A. Chun, and J. Geller, "Monitoring public health concerns using twitter sentiment classifications," IEEE International Conference on Healthcare Informatics, 2013, Washington, DC, USA, pp. 335-344: IEEE, 2013. [DOI:10.1109/ICHI.2013.47] []
20. [20] X. Ye, S. Li, X. Yang, and C. Qin, "Use of social media for the detection and analysis of infectious diseases in China," ISPRS Int J Geo-Inf, vol. 5, no. 9, p. 156, 2016. [DOI:10.3390/ijgi5090156]
21. [21] L. Nemes and A. Kiss, "Social media sentiment analysis based on COVID-19," J Inf Telecommun, pp. 1-15, 2020. [DOI:10.1080/24751839.2020.1790793]
22. [22] C. E. Lopez, M. Vasu, and C. Gallemore, "Understanding the perception of COVID-19 policies by mining a multilanguage Twitter dataset," arXiv preprint arXiv:2003.10359, 2020.
23. [23] D. Pastor-Escuredo and C. Tarazona, "Characterizing information leaders in Twitter during COVID-19 crisis," arXiv preprint arXiv:2005.07266, 2020.
24. [24] R. Kouzy et al., "Coronavirus goes viral: quantifying the COVID-19 misinformation epidemic on Twitter," Cureus, vol. 12, no. 3, 2020. [DOI:10.7759/cureus.7255] [PMID] []
25. [25] L. Singh et al., "A first look at COVID-19 information and misinformation sharing on Twitter," arXiv preprint arXiv:2003.13907, 2020.
26. [26] F. Pierri and S. Ceri, "False news on social media: a data-driven survey," ACM Sigmod Record, vol. 48, no. 2, pp. 18-27, 2019. [DOI:10.1145/3377330.3377334]
27. [27] N. Ruchansky, S. Seo, and Y. Liu, "Csi: A hybrid deep model for fake news detection," ACM on Conference on Information and Knowledge Management, 2017, Singapore, pp. 797-806, 2017.
28. [28] K. Popat, S. Mukherjee, A. Yates, and G. Weikum, "Declare: Debunking fake news and false claims using evidence-aware deep learning," arXiv preprint arXiv:1809.06416, 2018. [DOI:10.18653/v1/D18-1003]
29. [29] V. K. Vijayan, K. Bindu, and L. Parameswaran, "A comprehensive study of text classification algorithms," International Conference on Advances in Computing, Communications and Informatics (ICACCI), 2017, Udupi, Karnataka, India, pp. 1109-1113: IEEE, 2017. [DOI:10.1109/ICACCI.2017.8125990]
30. [30] B. Liu, E. Blasch, Y. Chen, D. Shen, and G. Chen, "Scalable sentiment classification for big data analysis using naive bayes classifier," IEEE international conference on big data, 2013, Santa Clara, CA, USA, pp. 99-104: IEEE, 2013. [DOI:10.1109/BigData.2013.6691740]
31. [31] E. Boiy, P. Hens, K. Deschacht, and M.-F. Moens, "Automatic Sentiment Analysis in On-line Text," in ELPUB, 2007, pp. 349-360, 2007.
32. [32] K. M. Leung, "Naive bayesian classifier," Polytechnic University Department of Computer Science/Finance and Risk Engineering, vol. 2007, pp. 123-156, 2007.
33. [33] W. Ramadhan, S. A. Novianty, and S. C. Setianingsih, "Sentiment analysis using multinomial logistic regression," International Conference on Control, Electronics, Renewable Energy and Communications (ICCREC), 2017, Piscataway, New Jersey, pp. 46-49: IEEE, 2017. [DOI:10.1109/ICCEREC.2017.8226700]
34. [34] K. Kowsari, K. Jafari Meimandi, M. Heidarysafa, S. Mendu, L. Barnes, and D. Brown, "Text classification algorithms: A survey," Information, vol. 10, no. 4, p. 150, 2019. [DOI:10.3390/info10040150]
35. [35] R. Plutchik, "A general psychoevolutionary theory of emotion," in Theories of emotion: Elsevier, 1980, pp. 3-33. [DOI:10.1016/B978-0-12-558701-3.50007-7]
36. [36] S. Wu, Y. Liu, J. Wang, and Q. Li, "Sentiment analysis method based on Kmeans and online transfer learning," Comput. Mater. Continua, vol. 60, no. 3, pp. 1207-1222, 2019. [DOI:10.32604/cmc.2019.05835]
37. [37] Y.-C. Liu, M. Liu, and X.-L. Wang, Application of self-organizing maps in text clustering: a review. chapter, 2012. [DOI:10.5772/50618]
38. [38] V. Khachidze, T. Wang, S. Siddiqui, V. Liu, S. Cappuccio, and A. Lim, "Contemporary research on E-business technology and strategy," in Conference proceedings iCETS, 2012, p. 43: Springer. [DOI:10.1007/978-3-642-34447-3]
39. [39] Y. P. Raykov, A. Boukouvalas, F. Baig, and M. A. Little, "What to do when k-means clustering fails: a simple yet principled alternative algorithm," PloS one, vol. 11, no. 9, p. e0162259, 2016. [DOI:10.1371/journal.pone.0162259] [PMID] []
40. [40] Y. Kou, H. Cui, and L. Xu, "The Application of SOM and K-Means Algorithms in Public Security Performance Analysis and Forecasting," International Conference on E-business Technology and Strategy, 2012, Tianjin, China, pp. 73-84: Springer, 2012. [DOI:10.1007/978-3-642-34447-3_7]
41. [41] J. C. Bezdek, R. Ehrlich, and W. Full, "FCM: The fuzzy c-means clustering algorithm," Computers & geosciences, vol. 10, no. 2-3, pp. 191-203, 1984. [DOI:10.1016/0098-3004(84)90020-7]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این تارنما متعلق به فصل‌نامة علمی - پژوهشی پردازش علائم و داده‌ها است.