دانشگاه صنعتی همدان
چکیده: (89 مشاهده)
در بحران کرونا با طیف وسیعی از افکار، احساسات و نگرش ها در شبکه های اجتماعی مواجه ایم. دستیابی به درک جامعی از نگرش های جامعه نیازمند پردازش این دادههاست. هدف این پژوهش شناسایی ویژگی پیام هایی است که منجر به قطبیت های احساسی مختلف در شبکه های اجتماعی می شوند. در این پژوهش از پست های فارسی توییتر، اینستاگرام، تلگرام و کانال های خبری و تکنیکهای پردازش زبان طبیعی استفاده شده است. در روش پیشنهادی این پژوهش، خوشه بندی دو مرحله ای مبتنی بر شبکه عصبی خود سازمانده و K-میانگین استفاده شده است. نتایج نشان دادند پست های حوزه سلامت و فرهنگ با قطبیت منفی، به احساساتی مانند ترس، تنفر، غم و خشم منجر شده است. پیام های مربوط به عملکرد هیجانی و نادرست مردم با احساس غم، ترس و استرس همراه است و امید در جامعه را کاهش داده است.
شمارهی مقاله: 9
نوع مطالعه:
كاربردي |
موضوع مقاله:
مقالات پردازش متن دریافت: 1399/10/4 | پذیرش: 1400/10/18 | انتشار: 1402/5/22 | انتشار الکترونیک: 1402/5/22