1. [1] Keshavarz, A. (2008), Classification of Hyperspectral Images Using Spatial Information, PhD. Desertation, Faculty of electrical and computer engineering, Tarbiat Modares University, Tehran, Iran.
2. [2] Chang, C. I. (2013). Hyperspectral data processing: algorithm design and analysis. John Wiley & Sons. [
DOI:10.1002/9781118269787]
3. [3] Dhawan, S. (2011). A review of image compression and comparison of its algorithms. International Journal of electronics & Communication technology, 2(1), 22-26.
4. [4] Blanes, I., Magli, E., & Serra-Sagrista, J. (2014). A tutorial on image compression for optical space imaging systems. IEEE Geoscience and Remote Sensing Magazine, 2(3), 8-26. [
DOI:10.1109/MGRS.2014.2352465]
5. [5] Li, F., Lukin, V., Ieremeiev, O., & Okarma, K. (2022). Quality Control for the BPG Lossy Compression of Three-Channel Remote Sensing Images. Remote Sensing, 14(8), 1824. [
DOI:10.3390/rs14081824]
6. [6] Miguel, A. C., Ladner, R. E., Riskin, E. A., Hauck, S., Barney, D. K., Askew, A. R., & Chang, A. (2006). Predictive coding of hyperspectral images. In Hyperspectral Data Compression (pp. 197-231). Springer, Boston, MA. [
DOI:10.1007/0-387-28600-4_8]
7. [7] Christophe, E. (2011). Hyperspectral data compression tradeoff. In Optical remote sensing. Springer, Berlin, Heidelberg. p. 9-29. [
DOI:10.1007/978-3-642-14212-3_2]
8. [8] Sujithra, D. S., Manickam, T., & Sudheer, D. S. (2013). Compression of hyperspectral image using discrete wavelet transform and Walsh Hadamard transform. Int. J. Adv. Res. Electron. Commun. Eng.(IJARECE), 2, 314-319.
9. [9] Hosseini, S. A., & Ghassemian, H. (2016). Rational function approximation for feature reduction in hyperspectral data. Remote Sensing Letters, 7(2), 101-110. [
DOI:10.1080/2150704X.2015.1101180]
10. [10] Hosseini, S. A., & Ghassemian, H. (2016). Hyperspectral data feature extraction using rational function curve fitting. International Journal of Pattern Recognition and Artificial Intelligence, 30(01), 1650001. [
DOI:10.1142/S0218001416500014]
11. [11] Fang, L., & Gossard, D. C. (1995). Multidimensional curve fitting to unorganized data points by nonlinear minimization. Computer-Aided Design, 27(1), 48-58. [
DOI:10.1016/0010-4485(95)90752-2]
12. [12] Boyd, J. P. (1992). Defeating the Runge phenomenon for equispaced polynomial interpolation via Tikhonov regularization. Applied Mathematics Letters, 5(6), 57-59. [
DOI:10.1016/0893-9659(92)90014-Z]
13. [13] Epperson, J. F. (1987). On the Runge example. The American Mathematical Monthly, 94(4), 329-341. [
DOI:10.1080/00029890.1987.12000642]
14. [14] Amindavar, H., & Ritcey, J. A. (1994). Padé approximations of probability density functions. IEEE Transactions on Aerospace and Electronic Systems, 30(2), 416-424. [
DOI:10.1109/7.272264]
15. [15] Savitzky, A., & Golay, M. J. (1964). Smoothing and differentiation of data by simplified least squares procedures. Analytical chemistry, 36(8), 1627-1639. [
DOI:10.1021/ac60214a047]
16. [16] Steinier, J., Termonia, Y., & Deltour, J. (1972). Smoothing and differentiation of data by simplified least square procedure. Analytical chemistry, 44(11), 1906-1909. [
DOI:10.1021/ac60319a045] [
PMID]
17. [17] Madden, H. (1978). Comments on smoothing and differentiation of data by simplified least square procedure. Analytical Chemistry, 50(9), 1383-86. [
DOI:10.1021/ac50031a048]
18. [18] Ruffin, C., & King, R. L. (1999, June). The analysis of hyperspectral data using Savitzky-Golay filtering-theoretical basis. 1. In IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No. 99CH36293) (Vol. 2, pp. 756-758). IEEE.
19. [19] King, R. L., Ruffin, C., LaMastus, F. E., & Shaw, D. R. (1999, June). The analysis of hyperspectral data using Savitzky-Golay filtering-practical issues. 2. In IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No. 99CH36293) (Vol. 1, pp. 398-400). IEEE.
20. [20]] Beitollahi, M., & Hosseini, S. A. (2017, May). Using Savitsky-Golay filter and interval curve fitting in order to hyperspectral data compression. In 2017 Iranian Conference on Electrical Engineering (ICEE) (pp. 1967-1972). IEEE. [
DOI:10.1109/IranianCEE.2017.7985378]
21. [21] Universidad-del-Pais-Vasco. Hyperspectral Remote Sensing Scenes [Online].
22. [23] Available: http://www.ehu.es/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes.
23. [24] ] Landgrebe, D. A. (2003). Signal theory methods in multispectral remote sensing (Vol. 24). John Wiley & Sons. [
DOI:10.1002/0471723800]
24. [25] Beitollahi, M., & Hosseini, S. A. (2018, May). Using savitsky-golay smoothing filter in hyperspectral data compression by curve fitting. In Electrical Engineering (ICEE), Iranian Conference on (pp. 452-457). IEEE. [
DOI:10.1109/ICEE.2018.8472702]
25. [26] Beitollahi, M., & Hosseini, S. A. (2018, July). Hyperspectral Data Compression by Using Rational Function Curve Fitting in Spectral Signature Subintervals. In 2018 11th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP) (pp. 1-6). IEEE. [
DOI:10.1109/CSNDSP.2018.8471809]
26. [27] Kamandar, M., & Ghassemian, H. (2012). Linear feature extraction for hyperspectral images based on information theoretic learning. IEEE Geoscience and Remote Sensing Letters, 10(4), 702-706. [
DOI:10.1109/LGRS.2012.2219575]
27. [28] Beitollahi, M., & Hosseini, S. A. (2016, July). Using curve fitting for spectral reflectance curves intervals in order to hyperspectral data compression. In 2016 10th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP) (pp. 1-5). IEEE. [
DOI:10.1109/CSNDSP.2016.7573958]