دوره 18، شماره 1 - ( 3-1400 )                   جلد 18 شماره 1 صفحات 150-135 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Abbasi M, Afshari Haghdoost M. Improvement and parallelization of Snort network intrusion detection mechanism using graphics processing unit. JSDP. 2021; 18 (1) :150-135
URL: http://jsdp.rcisp.ac.ir/article-1-964-fa.html
عباسی مهدی، افشاری حقدوست مطهره. بهبود و موازی‌سازی سازوکار تشخیص نفوذ شبکه Snort با استفاده از واحد پردازش گرافیکی. پردازش علائم و داده‌ها. 1400; 18 (1) :150-135

URL: http://jsdp.rcisp.ac.ir/article-1-964-fa.html


دانشگاه بوعلی سینا
چکیده:   (378 مشاهده)
سامانه تشخیص نفوذ شبکه به‌منظور برقراری امنیت کامل در شبکه‌های رایانه‌ای به‌طور گسترده مورداستفاده قرار می‌گیرد. سامانه تشخیص نفوذ شبکه مبتنی بر امضا نسبت به نوع مبتنی بر ناهنجاری به‌دلیل نرخ هشدار اشتباه پایین‌تر، از عمومیت بالاتری برخوردار است. فرآیند تطبیق الگو در چنین دستگاهی نیازمند پردازش محاسباتی بالا است. از سوی دیگر توسعه سریع پهنای باند شبکه و سرعت‌های بالای پیوند که خود موجب از‌دست‌رفتن تعداد زیادی از بسته‌های ورودی در سامانه تشخیص نفوذ شبکه می‌شود، به‌عنوان عوامل کلیدی محدودکننده کارایی این نوع سامانه، آن را با چالش‌هایی روبه‌رو کرده است. Snort یک سامانه تشخیص نفوذ شبکه مبتنی بر امضا بوده که به‌دلیل متن‌باز، رایگان و سبک‌بودن بسیار پرکاربرد است. در این مقاله جهت بهبود کارایی سامانه تشخیص نفوذ شبکه snort، از ایده کلیدی فیلتر‌کردن بسته‌های غیرضروری شبکه بر اساس فهرست سیاه نشانی‌‌ها، به‌عنوان یک سازوکار پیش‌پردازش استفاده‌ شده است. یکی از چالش‌های مهم این سازوکار کاهش سرعت فیلتر‌کردن بسته‌ها، با افزایش حجم ترافیک شبکه است؛ بنابراین به‌عنوان بهبود دوم، جهت تسریع عملکرد این سامانه ارائه‌شده، نسخه موازی آن را روی بستر رمز جهت اجرا روی واحد پردازش گرافیکی ارائه کردیم. الگوریتم پیشنهادی را بر روی مجموعه‌داده DARPA در یک پردازنده گرافیکی آزمایش شد. نتایج ارزیابی نشان می‌دهد که روش پیشنهادی با تسریعی بیش از سی برابر نسبت به نسخه متوالی، باعث بهبود قابل‌توجهی در عملکرد فیلتر بسته مبتنی بر فهرست سیاه می‌شود. همچنین، بهره‌وری روش پیشنهادی در استفاده از منابع پردازنده گرافیکی برای اجرای موازی تشخیص نفوذ نسبت به بهترین روش موجود حدود 81 درصد بیشتر است.
متن کامل [PDF 2022 kb]   (220 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: مقالات گروه امنیت اطلاعات
دریافت: 1397/11/12 | پذیرش: 1399/11/11 | انتشار: 1400/3/1 | انتشار الکترونیک: 1400/3/1

فهرست منابع
1. [1] R. Chi, "Intrusion detection system based on snort," Lecture Notes in Electrical Engineering, vol. 272, pp. 657-664, 2014. [DOI:10.1007/978-3-642-40633-1_82]
2. [2] Y. Meng and L.-F. Kwok, "Adaptive blacklist-based packet filter with a statistic-based approach in network intrusion detection," J. Netw. Comput. Appl., vol. 39, pp. 83-92, 2014. [DOI:10.1016/j.jnca.2013.05.009]
3. [3] T. Ho, S. Cho, and S. Oh, "Parallel multiple pattern matching schemes based on cuckoo filter for deep packet inspection on graphics processing units," IET Information Security, vol. 12, pp. 381-388, 2018. [DOI:10.1049/iet-ifs.2017.0421]
4. [4] C. Hung, P. Wu, H. Wang, and C. Lin, "Efficient Parallel Muti-pattern Matching Using GPGPU Acceleration for Packet Filtering," in 2015 IEEE 17th International Conference on High Performance Computing and Communications, 2015 IEEE 7th International Symposium on Cyberspace Safety and Security, and 2015 IEEE 12th International Conference on Embedded Software and Systems, 2015, pp. 1843-1847. [DOI:10.1109/HPCC-CSS-ICESS.2015.209] [PMID] [PMCID]
5. [5] C.-L. Hung, C.-Y. Lin, and H.-H. Wang, "An efficient parallel-network packet pattern-matching approach using GPUs," Journal of Systems Architecture, vol. 60, pp. 431-439, 2014/05/01/ 2014. [DOI:10.1016/j.sysarc.2014.01.007]
6. [6] کیوان رحیمی‌زاده، محمدعلی ترکمانی، عباس دهقانی، "نگاشت چرخه McGraw به متدولوژی RUP برای توسعه نرم‌افزار امن"، پردازش علائم و داده‌ها، 1399 ، دوره 17، شماره 2، صفحات 33-46.
7. [6] K. RahimiZadeh, M. Torkamani, and A. Dehghani, "Mapping of McGraw Cycle to RUP Methodology for Secure Software Developing," Signal and Data Processing, vol. 17, pp. 33-46, 2020. [DOI:10.29252/jsdp.17.2.46]
8. [7] K. Kendall, "A Database of Computer Attacks for the Evaluation of Intrusion Detection Systems," Electrical Engineering and Computer Science, MASSACHUSETTS INSTITUTE OF TECHNOLOGY, MIT Lincoln, 1999.
9. [8] P. Innella and O. McMillan, An Introduction to Intrusion Detection Systems, 2001.
10. [9] P. Bunel, "An introduction to Intrusion Detection Systems," in Sans Security Essentials v1.4c, ed LONDON, 2004. [DOI:10.1016/B978-193226669-6/50021-5]
11. [10] P. Bunel, "Host- vs. Network-Based Intrusion Detection Systems," in Sans Security Essentials, ed, 2004.
12. [11] X. Luo, "Model design artificial intelligence and research of adaptive network intrusion detection and defense system using fuzzy logic," Journal of Intelligent & Fuzzy Systems, pp. 1-9.
13. [12] A. S. Almogren, "Intrusion detection in Edge-of-Things computing," Journal of Parallel and Distributed Computing, vol. 137, pp. 259-265, 2020. [DOI:10.1016/j.jpdc.2019.12.008]
14. [13] F. Erlacher and F. Dressler, "On high-speed flow-based intrusion detection using snort-compatible signatures," IEEE Transactions on Dependable and Secure Computing, 2020. [DOI:10.1109/TDSC.2020.2973992]
15. [14] A. Thakkar and R. Lohiya, "A review of the advancement in intrusion detection datasets," Procedia Computer Science, vol. 167, pp. 636-645, 2020. [DOI:10.1016/j.procs.2020.03.330]
16. [15] B. Caswell, J. Beale, and A. R Baker, Snort IDS and IPS Toolkit. Syngress Publishing, Inc. Elsevier, Inc.: Williams, Andrew 2007.
17. [16] R. Chi, Intrusion Detection System Based on Snort. China, 2014. [DOI:10.1007/978-3-642-40633-1_82]
18. [17] M. Roesch, C. Green, and S. Team, SNORT Users Manual 2.9.9, 2016.
19. [18] S. Sharma and M. Dixit, "A Review on Network Intrusion Detection System Using Open Source Snort," vol. 9, pp. 61-70, 2016. [DOI:10.14257/ijdta.2016.9.4.05]
20. [19] C.-H. Lin, "Accelerating String Matching Algorithms on Multicore Processors."
21. [20] R. S. Boyer and J. S. Moore, "A fast string searching algorithm," Commun. ACM, vol. 20, pp. 762-772, 1977. [DOI:10.1145/359842.359859]
22. [21] A. V. Aho and M. J. Corasick, "Efficient string matching: an aid to bibliographic search," Commun. ACM, vol. 18, pp. 333-340, 1975. [DOI:10.1145/360825.360855]
23. [22] C. L. Hung, C. Y. Lin, H. h. Wang, and C. Y. Chang, "Efficient Packet Pattern Matching for Gigabit Network Intrusion Detection Using GPUs," in High Performance Computing and Communication & 2012 IEEE 9th International Conference on Embedded Software and Systems (HPCC-ICESS), 2012 IEEE 14th International Conference on, 2012, pp. 1612-1617. [DOI:10.1109/HPCC.2012.235]
24. [23] C. S. Kouzinopoulos and K. G. Margaritis, "String Matching on a Multicore GPU Using CUDA," in Informatics, 2009. PCI '09. 13th Panhellenic Conference on, 2009, pp. 14-18. [DOI:10.1109/PCI.2009.47]
25. [24] حامد صادقی، امیر اخوان بی تقصیر، "آشکارسازی سیگنال بر اساس پردازش موازی مبتنی بر جی‌پی‌یو در شبکه‌های حس‌گری صوتی دارای زیرساخت"، پردازش علائم و داده ها، 1396 ، دوره 14، شماره 4، صفحات 19-30.
26. [24] h. sadeghi and A. Akhavan Bitaghsir, "Signal Detection Based on GPU-Assisted Parallel Processing for Infrastructure-based Acoustical Sensor Networks," Signal and Data Processing, vol. 14, pp. 19-30, 2018. [DOI:10.29252/jsdp.14.4.19]
27. [25] G. Vasiliadis, M. Polychronakis, and S. Ioannidis, "MIDeA: a multi-parallel intrusion detection architecture," presented at the Proceedings of the 18th ACM conference on Computer and communications security, Chicago, Illinois, USA, 2011. [DOI:10.1145/2046707.2046741]
28. [26] S. Soroushnia, M. Daneshtalab, T. Pahikkala, and J. Plosila, "Parallel Implementation of Fuzzified Pattern Matching Algorithm on GPU," in 2015 23rd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing, 2015, pp. 341-344. [DOI:10.1109/PDP.2015.75]
29. [27] N. P. Tran, M. Lee, S. Hong, and J. Choi, "High Throughput Parallel Implementation of Aho-Corasick Algorithm on a GPU," in Parallel and Distributed Processing Symposium Workshops & PhD Forum (IPDPSW), 2013 IEEE 27th International, 2013, pp. 1807-1816. [DOI:10.1109/IPDPSW.2013.116]
30. [28] G. Vasiliadis, M. Polychronakis, and S. Ioannidis, "Parallelization and characterization of pattern matching using GPUs," in Workload Characterization (IISWC), 2011 IEEE International Symposium on, 2011, pp. 216-225. [DOI:10.1109/IISWC.2011.6114181]
31. [29] C. H. Lin, C. H. Liu, L. S. Chien, and S. C. Chang, "Accelerating Pattern Matching Using a Novel Parallel Algorithm on GPUs," IEEE Transactions on Computers, vol. 62, pp. 1916-06, 20313. [DOI:10.1109/TC.2012.254]
32. [30] L. Vokorokos, M. Ennert, M. >Čajkovský, and J. Radušovský, "A Survey of parallel intrusion detection on graphical processors," Central European Journal of Computer Science, vol. 4, pp. 222-230, 2014. [DOI:10.2478/s13537-014-0213-6]
33. [31] A. P. M.S., "Parallelizing a network intrusion detection system using a GPU," Master of Science, Computer Science and Engineering, Louisville, UK, 2012.
34. [32] G. Vasiliadis, S. Antonatos, M. Polychronakis, E. P. Markatos, and S. Ioannidis, "Gnort: High Performance Network Intrusion Detection Using Graphics Processors," in Recent Advances in Intrusion Detection: 11th International Symposium, RAID 2008, Cambridge, MA, USA, September 15-17, 2008. Proceedings, R. Lippmann, E. Kirda, and A. Trachtenberg, Eds., ed Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 116-134. [DOI:10.1007/978-3-540-87403-4_7]
35. [33] G. Vasiliadis, M. Polychronakis, S. Antonatos, E. P. Markatos, and S. Ioannidis, "Regular Expression Matching on Graphics Hardware for Intrusion Detection," in Recent Advances in Intrusion Detection: 12th International Symposium, RAID 2009, Saint-Malo, France, September 23-25, 2009. Proceedings, E. Kirda, S. Jha, and D. Balzarotti, Eds., ed Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 265-283. [DOI:10.1007/978-3-642-04342-0_14]
36. [34] M. A. Jamshed, J. Lee, S. Moon, I. Yun, D. Kim, S. Lee, et al., "Kargus: a highly-scalable software-based intrusion detection system," presented at the Proceedings of the 2012 ACM conference on Computer and communications security, Raleigh, North Carolina, USA, 2012. [DOI:10.1145/2382196.2382232]
37. [35] H. Song and J. W. Lockwood, "Efficient packet classification for network intrusion detection using FPGA," presented at the Proceedings of the 2005 ACM/SIGDA 13th international symposium on Field-programmable gate arrays, Monterey, California, USA, 2005. [DOI:10.1145/1046192.1046223]
38. [36] Y. Meng and L. f. Kwok, "Adaptive context-aware packet filter scheme using statistic-based blacklist generation in network intrusion detection," in Information Assurance and Security (IAS), 2011 7th International Conference on, 2011, pp. 74-79. [DOI:10.1109/ISIAS.2011.6122798] [PMID] [PMCID]
39. [37] M. Ramesh and H. Jeon, "Parallelizing Deep Packet Inspection on GPU," in 2018 IEEE Fourth International Conference on Big Data Computing Service and Applications (BigDataService), 2018, pp. 248-253. [DOI:10.1109/BigDataService.2018.00044]
40. [38] S. Hakak, A. Kamsin, P. Shivakumara, G. A. Gilkar, W. Z. Khan, and M. Imran, "Exact String Matching Algorithms: Survey, Issues, and Future Research Directions," IEEE Access, 2019. [DOI:10.1109/ACCESS.2019.2914071]
41. [39] C.-L. Hung, T.-H. Hsu, H.-H. Wang, and C.-Y. Lin, A GPU-based Bit-Parallel Multiple Pattern Matching Algorithm, 2018. [DOI:10.1109/HPCC/SmartCity/DSS.2018.00205]
42. [40] C. Thomas, V. Sharma, and N. Balakrishnan, Usefulness of DARPA dataset for intrusion detection system evaluation, 2008. [DOI:10.1117/12.777341]
43. [41] P. P, M. T, and L. Raj, A Comparative Study on String Matching Algorithm of Biological Sequences, 2014.
44. [42] N. Tuck, T. Sherwood, B. Calder, and G. Varghese, Deterministic Memory-Efficient String Matching Algorithms for Intrusion Detection vol. 4, 2004.
45. [43] "Exact Matching: Classical Comparison-Based Methods," in Algorithms on Strings, Trees, and Sequences: Computer Science and Computational Biology, D. Gusfield, Ed., ed Cambridge: Cambridge University Press, 1997, pp. 16-34. [DOI:10.1017/CBO9780511574931.004]
46. [44] C. H. Lin, "Accelerating String Matching Algorithms on Multicore Processors," vol. 2, pp. 52-59, 6 June- 2016 2016.
47. [45] J. Yu, Y. Xue, and J. Li, "Memory efficient string matching algorithm for network intrusion management system," Tsinghua Science and Technology, vol. 12, pp. 585-593, 2007. [DOI:10.1016/S1007-0214(07)70137-2]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این تارنما متعلق به فصل‌نامة علمی - پژوهشی پردازش علائم و داده‌ها است.