1. Kwok, T. W. J., and D. Dye, "A review of the processing, microstructure and property relationships in medium Mn steels", International Materials Reviews, vol. 68, no.8, p. 1098-1134, 2023. [
DOI:10.1080/09506608.2023.2199617]
2. Uehata, Nao, et al, "Optical microscopy-based damage quantification: an example of cryogenic deformation of a dual-phase steel", isij international, vol. 58, no.1, p. 179-185, 2018. [
DOI:10.2355/isijinternational.ISIJINT-2017-468]
3. G. Krauss, "Steels: processing, structure, and performance", Asm International, 2015. [
DOI:10.31399/asm.tb.spsp2.9781627082655]
4. E. Pereloma and D. V. Edmonds, "Phase transformations in steels: Diffusionless transformations, high strength steels", modelling and advanced analytical techniques, Elsevier, 2012. [
DOI:10.1533/9780857096104]
5. Muñoz-Rodenas, Jorge, et al, "Effectiveness of machine-learning and deep-learning strategies for the classification of heat treatments applied to low-carbon steels based on microstructural analysis", Applied Sciences, vol. 13, no. 6, p. 3479, 2023. [
DOI:10.3390/app13063479]
6. J. I. Goldstein, D. E. Newbury, J. R. Michael, N. W. Ritchie, J. H. J. Scott, and D. C. Joy, "Scanning electron microscopy and X-ray microanalysis", springer, 2017. [
DOI:10.1007/978-1-4939-6676-9]
7. C. Mignot, "Color (and 3D) for scanning electron microscopy", ed: Oxford University Press, 2018. [
DOI:10.1017/S1551929518000482]
8. Hadjipanayis, George C., and Richard W. Siegel, eds. Nanophase materials: Synthesis-properties-applications, Vol. 260. Springer Science & Business Media, 2012.
9. F.-Y. Zhu, Q.-Q. Wang, X.-S. Zhang, W. Hu, X. Zhao, and H.-X. Zhang, "3D nanostructure reconstruction based on the SEM imaging principle, and applications", Nanotechnology, vol. 25, no. 18, p. 185705, 2014. [
DOI:10.1088/0957-4484/25/18/185705] [
PMID]
10. D. Saladra and M. Kopernik, "Qualitative and quantitative interpretation of SEM image using digital image processing", Journal of microscopy, vol. 264, no. 1, p. 102-124, 2016. [
DOI:10.1111/jmi.12431] [
PMID]
11. Y. Pourasad, "Detection and classification of breast masses using mammographically image processing," Razi Journal of Medical Sciences, vol. 27, no. 4, pp. 60-73, 2020.
12. S. Siddesha, S. Niranjan, and V. M. Aradhya, "Texture based classification of arecanut," in 2015 International Conference on Applied and Theoretical Computing and Communication Technology (iCATccT), IEEE, pp. 688-692, 2015. [
DOI:10.1109/ICATCCT.2015.7456971]
13. J. F. Ramirez-Villegas, E. Lam-Espinosa, and D. F. Ramirez-Moreno, "Microcalcification detection in mammograms using difference of Gaussians filters and a hybrid feedforward-Kohonen neural network," in 2009 XXII Brazilian Symposium on Computer Graphics and Image Processing, IEEE, pp. 186-193, 2009. [
DOI:10.1109/SIBGRAPI.2009.25]
14. Y. Dong et al., "Locally directional and extremal pattern for texture classification," IEEE Access, vol. 7, pp. 87931-87942, 2019. [
DOI:10.1109/ACCESS.2019.2924985]
15. ا. مصطفی، ع، احمدیان، م. ج. ابولحسنی و م. گیتی، «كلاسهبندی بافت تصاویر سونوگرافی بیماریهای منتشر كبدی با استفاده از تبدیل موجك»، مجلة فیزیك پزشكی ایران، 1385، 7 (2)، 67-76.
15. M. Akbar, A. R. Ahmadian, M. J. Abolhasani and M. Giti, "Tissue classification of ultrasound images of diffuse liver diseases using wavelet transform", vol. 2, no. 7, pp. 67-76, 2006.
16. R. Xu and D. Wunsch, Clustering, John Wiley & Sons, 2008. [
DOI:10.1002/9780470382776]
17. وحیدی فردوسی صدیقه، امیرخانی حسین، «ترکیب وزندار خوشهبندیها با هدف افزایش صحّت خوشهبندی نهایی»، پردازش علائم و دادهها، ۱۳۹۹; ۱۷ (۲) :۱۰۰-۸۵.
17. Vahidi Ferdosi S, Amirkhani H. "Weighted Ensemble Clustering for Increasing the Accuracy of the Final Clustering", JSDP; 17 (2):100-85, 2020. [
DOI:10.29252/jsdp.17.2.100]
18. I. Goodfellow, Y. Bengio, and A. Courville, Deep learning, MIT press, 2016.