دوره 21، شماره 3 - ( 10-1403 )                   جلد 21 شماره 3 صفحات 22-3 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Teymouri A, Deypir M. Two-level intrusion detection system for Internet of Things network based on deep learning. JSDP 2024; 21 (3) : 1
URL: http://jsdp.rcisp.ac.ir/article-1-1388-fa.html
تیموری احمد، دی پیر محمود. سامانه دو سطحی تشخیص نفوذ برای شبکه اینترنت اشیا مبتنی بر یادگیری عمیق. پردازش علائم و داده‌ها. 1403; 21 (3) :3-22

URL: http://jsdp.rcisp.ac.ir/article-1-1388-fa.html


دانشیار دانشکده مهندسی کامپیوتر، دانشگاه هوایی شهید ستاری، تهران
چکیده:   (748 مشاهده)
به موازات رشد استفاده از شبکه‌های اینترنت اشیا برای کاربردهای مختلف، تهدیدات و حملات مربوط به این نوع شبکه‌ها نیز افزایش پیدا کرده‌است. سامانه‌های تشخیص نفوذ به منظور تشخیص و شناسایی حملات در این‌گونه شبکه­‌ها طراحی و مورد استفاده قرار می‌گیرند و اقدام به شناسایی خرابکاری­‌ها و نفوذها و یا سوءاستفاده­‌هایی که از شبکه قرار است صورت بگیرد، کرده و این موضوع را به اطلاع مسئول مربوطه شبکه می‌­رسانند. در بیشتر سامانه­‌های تشخیص نفوذ، روش‌­ها و الگوریتم‌­های مختلفی از جمله الگوریتم‌­های مبتنی بر یادگیری ماشین و یادگیری عمیق استفاده می‌شود که هر کدام دارای مزایا و معایبی هستند، اما به طور معمول نسبت به روش‌­های ترکیبی نرخ صحت کمتری دارند. در سال‌های اخیر در تشخیص مبتنی بر ناهنجاری­ از ایده ترکیب طبقه­‌بندها استفاده شد‌ه‌است. ما در این پژوهش، برای افزایش سرعت الگوریتم در شناسایی و دستیابی به نرخ درستی و صحت بالاتر از ترکیب روش‌­های تحلیل مؤلفه اصلی یا PCA)) و شبکه­‌های عصبی پیچشی(CNN) برای طراحی سامانه تشخیص نفوذ پیشنهادی خود استفاده کرده‌ایم؛ از PCA به منظور کاهش ابعاد و حجم داده‌­های ورودی بهره بردیم تا به افزایش کارایی الگوریتم اصلی ما کمک کند و داده جدید تولیدشده با این الگوریتم در اختیار طبقه‌بند CNN قرار می­گیرد؛ همچنین ما از دو سطح از دسته‌بندی مبتنی بر شبکه عصبی عمیق پیچشی دودویی و چندکلاسه برای شناسایی حملات بهره بردیم. به این صورت که ابتدا حملات و داده­های نرمال به‌وسیله طبقه‌بند عمیق دودویی از هم جداسازی می‌­شوند؛ سپس به‌وسیله طبقه­‌بند عمیق چندکلاسه به شناسایی و تفکیک نوع حملات صورت‌گرفته پرداخته شده و دسته‌­بندی حملات صورت می‌­گیرد. بر اساس نتایج آزمایش‌­های انجام‌شده روی داده‌­های واقعی حملات، شاهد رشد نرخ صحت و درستی روش پیشنهادی نسبت به بسیاری از روش‌­های مطرح دیگر بوده‌­ایم.
شماره‌ی مقاله: 1
متن کامل [PDF 1395 kb]   (364 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: مقالات گروه امنیت اطلاعات
دریافت: 1402/4/30 | پذیرش: 1403/5/28 | انتشار: 1403/10/28 | انتشار الکترونیک: 1403/10/28

فهرست منابع
1. S. Prabavathy, K. Sundarakantham, and S. M. Shalinie. "Design of cognitive fog computing for intrusion detection in internet of things,", vol. 20, no. 3, pp. 291-298, 2018. [DOI:10.1109/JCN.2018.000041]
2. P. Kasinathan, C. Pastrone, M. A. Spirito, and M. Vinkovits. "Denial-of-Service detection in 6LoWPAN based Internet of Things,", pp. 600-607, 2013 [DOI:10.1109/WiMOB.2013.6673419]
3. G. Appice, A. Paolo Caforio, F. Andresini, & D. Malerba, "Improving cyber-threat detection by moving the boundary around the normal samples. In Machine Intelligence and Big Data Analytics for Cybersecurity Applications," pp. 105-127, 2021.‏ [DOI:10.1007/978-3-030-57024-8_5]
4. S. Hajj, R. El Sibai, J. Bou Abdo, J. Demerjian, A. Makhoul, & C. Guyeux, "Anomaly‐based intrusion detection systems: The requirements, methods, measurements, and datasets. Transactions on Emerging Telecommunications Technologies", 32(4), e4240, 2021. [DOI:10.1002/ett.4240]
5. M. Nobakht, V. Sivaraman, and R. Boreli, "A host-based intrusion detection and mitigation framework for smart home IoT using OpenFlow," 11th International conference on availability, reliability and security (ARES), pp. 147-156, 2016. [DOI:10.1109/ARES.2016.64]
6. H. Bostani and M. Sheikhan, "Hybrid of anomaly-based and specification-based IDS for Internet of Things using unsupervised OPF based on MapReduce approach," Computer Communications, vol. 98, pp. 52-71, 2017. [DOI:10.1016/j.comcom.2016.12.001]
7. M. Lopez-Martin, B. Carro, A. Sanchez-Esguevillas, and J. Lloret. "Conditional variational autoencoder for prediction and feature recovery applied to intrusion detection in iot," Sensors, vol. 17, no. 9, p. 1967, 2017. [DOI:10.3390/s17091967] [PMID] []
8. S. Rathore and J. H. Park, "Semi-supervised learning based distributed attack detection framework for IoT," Applied Soft Computing, vol. 72, pp. 79-89, 2018. [DOI:10.1016/j.asoc.2018.05.049]
9. Diro and N. Chilamkurti. "Distributed attack detection scheme using deep learning approach for Internet of Things," Future Generation Computer Systems, vol. 82, pp. 761-768, 2018. [DOI:10.1016/j.future.2017.08.043]
10. V. Kumari and P. R. K. Varma. "A semi-supervised intrusion detection system using active learning SVM and fuzzy c-means clustering," in 2017 International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud)(I-SMAC), pp. 481-485, 2017. [DOI:10.1109/I-SMAC.2017.8058397]
11. Z. K. Zhang, M. C. Y. Cho, C.-W. Wang, C.-W. Hsu, C.-K. Chen, and S. Shieh. "IoT security: ongoing challenges and research opportunities," in 2014 IEEE 7th international conference on service-oriented computing and applications, pp. 230-234, 2014. [DOI:10.1109/SOCA.2014.58]
12. M. Cheema, H. K. Qureshi, C. Chrysostomou, & M. Lestas, "Utilizing blockchain for distributed machine learning based intrusion detection in internet of things." In 2020 16th International Conference on Distributed Computing in Sensor Systems pp. 429-435, 2020. [DOI:10.1109/DCOSS49796.2020.00074]
13. T. Hagemann, & Katsarou, K. A systematic "review on anomaly detection for cloud computing environments. In 2020 3rd Artificial Intelligence and Cloud Computing Conference." pp. 83-96, 2020. [DOI:10.1145/3442536.3442550]
14. AbuGhazleh, A. Al-Rahayfeh, S. Atiewi, and A. Razaque. "Deep recurrent neural network for IoT intrusion detection system," Simulation Modelling Practice and Theory, vol. 101, pp. 10203, 2020. [DOI:10.1016/j.simpat.2019.102031]
15. Dhanabsl, S.P. Shantharajah, "A Study on NSL-KDD Dataset for Intrusion Detection System Based on Classification Algorithms." PP. 2319-5940, 2015.
16. Mackiewicz, and W. ratajczak, "Principal components analysis(PCA)" pp. 0098-3004, 1993. [DOI:10.1016/0098-3004(93)90090-R]
17. S. Indolia, A. K. Goswami, S. P. Mishra, and P. Asopa, "Conceptual Understanding of Convolutional Neural Network- A Deep Learning Approach" pp. 10-1016, 2018. [DOI:10.1016/j.procs.2018.05.069]
18. S. Raza, L. Wallgren, and T. Voigt. "SVELTE: Real-time intrusion detection in the Internet of Things," Ad hoc networks, vol. 11, no. 8, pp. 2661-2674, 2013. [DOI:10.1016/j.adhoc.2013.04.014]
19. Jun and C. Chi. "Design of complex event-processing IDS in internet of things," in 2014 Sixth International Conference on Measuring Technology and Mechatronics Automation, pp. 226-229, 2014. [DOI:10.1109/ICMTMA.2014.57] [PMID]
20. T. S. Naseri, and F. S. Gharehchopogh, "A Feature Selection Based on the Farmland Fertility Algorithm for Improved Intrusion Detection Systems". Journal of Network and Systems Management, 30(3), pp. 1-27, 2022. [DOI:10.1007/s10922-022-09653-9]
21. S. K. Amalapuram, A.Tadwai, , R.Vinta, , S. S.Channappayya, and B. R. Tamma, "Continual Learning for Anomaly based Network Intrusion Detection". In 2022 14th International Conference on COMmunication Systems & NETworkS (COMSNETS), pp. 497-505, 2022. [DOI:10.1109/COMSNETS53615.2022.9668482]
22. D.Teixeira, , S. Malta, , and P.Pinto, "A Vote-Based Architecture to Generate Classified Datasets and Improve Performance of Intrusion Detection Systems Based on Supervised Learning". Future Internet, 14(3), 72,‏ 2022. [DOI:10.3390/fi14030072]
23. E. Gharavi, H. Veisi, "Using RST-based deep neural networks to improve text representation", Signal and Data Processing, 20 (1), pp. 181-197, 2023. [DOI:10.61186/jsdp.20.1.181]
24. S. Abbasi, S. Nejatian, H. Parvin, K. Bagherifard, V. Rezaie, "The ensemble clustering with maximize diversity using evolutionary optimization algorithms", Signal and Data Processing, 19 (4), pp. 95-120, 2023. [DOI:10.61186/jsdp.19.4.95]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این تارنما متعلق به فصل‌نامة علمی - پژوهشی پردازش علائم و داده‌ها است.