دوره 20، شماره 3 - ( 10-1402 )                   جلد 20 شماره 3 صفحات 224-197 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Bahrani P, Minaei Bidgoli B, Parvin H, Mirzarzaei M, Keshavarz A. A Content-Collaborative Recommender System based on clustering and ontology. JSDP 2023; 20 (3) : 12
URL: http://jsdp.rcisp.ac.ir/article-1-1375-fa.html
بحرانی پیام، مینایی بیدگلی بهروز، پروین حمید، میرزارضایی میترا، کشاورز احمد. یک سیستم پیشنهادگر محتوا-مشارکتی مبتنی بر خوشه‌بندی و هستان‌شناسی. پردازش علائم و داده‌ها. 1402; 20 (3) :197-224

URL: http://jsdp.rcisp.ac.ir/article-1-1375-fa.html


گروه مهندسی کامپیوتر، واحد نورآباد ممسنی، دانشگاه آزاد اسلامی، نورآباد ممسنی فارس، ایران
چکیده:   (675 مشاهده)
سامانه‌های پیشنهادگر سامانه‌هایی هستند که در گذر زمان یاد می‌گیرند که هر فرد یا مشتری احتمالاً چه کالا یا قلمی را می‌پسندد و آن را به او پیشنهاد می‌دهند. این سامانه‌ها اغلب بر اساس رفتارهای مشابه از دیگر افراد (احتمالاً مشابه) عمل می‌کنند. به‌طور کلی یافتن افراد مشابه، به علت زیاد بودن کاربران، فرایندی بسیار زمان‌بر و به علت کمبود اطلاعات، نادقیق است. به همین دلیل برخی از روش­ها، رو به افزایش سرعت آورده‌اند. از طرفی، برخی از روش­های دیگر، رو به افزودن اطلاعاتِ اضافه آورده تا در گذر این اطلاعات بتوانند دقت یافتن کاربران مشابه یا همسایه را افزایش دهند. برخی دیگر نیز، به روش­های ترکیبی رو آورده‌اند. اخیراً محققان با به‌کارگیری روش­های خوشه­بندی پایه که بر اساس یافتن شبیه‌ترین کاربران همسایه با کمک خوشه­بندی کاربران می‌باشد، و همچنین استفاده از روش‌های محتوا پایه و بعضاً اضافه نمودن هستان‌شناسی به روش‌های محتوا پایه توانسته‌اند با بهره‌گیری از مزایای این روش‌ها، برخی از چالش‌های فوق را تا حد قابل قبولی حل نمایند. در سامانه پیشنهادگر ترکیبی پیشنهادی، از یک سامانه دو مرحله‌ای استفاده کرده‌ایم که در مرحله اول، دو مدل پیش‌بینی‌های خود را انجام داده، سپس در مرحله دوم به‌وسیله یک مؤلفه ترکیب‌گر، نتایج دو بخش مرحله اول با یکدیگر ترکیب شده و نتایج به‌دست آمده را به‌عنوان نتایج نهایی سامانه به ما ارائه می‌دهد. در بخش اول، یک سامانه مبتنی بر پر‌کردن مقادیر گم شده، مقادیر خالی در ماتریس امتیازدهی را پر می‌کند. برای این مهم، از بین روش‌های پرکردن داده‌های گم شده، یک روش که با پرکردن مجموعه داده در شرایط بسیار تُنُک سازگار بود را طراحی کرده و سپس آن را به روش خودمان تعمیم داده‌ایم. در این راستا یک روش مبتنی بر خوشه‌بندی فاصله‌گری ارائه کرده‌ایم. در بخش دوم که خود یک سامانه پیشنهادگر ترکیبی هستان‌شناسی پایه می‌باشد، ابتدا به کمک یک خزنده وب، اطلاعات هر قلم را استخراج کرده، سپس در یک هستان‌شناسی پایه به کمک یک روش پیشنهادی، اقدام به بهبود ساختار هستان‌شناسی به‌وسیله حذف یال‌های همسان می‌نماییم. بدین ترتیب دقت اندازه‌گیری شباهت معنایی بین اقلام و کاربران در مراحل بعدی افزایش یافته و میزان اثربخشی پیشنهادات ارائه شده به‌طور با‌معنایی بهبود می‌یابد. شایان ذکر است این هستان‌شناسی یک هستان‌شناسی جامع نیست. درنهایت به کمک یک روش اندازه‌گیری شباهت ابتکاریِ هستان‌شناسی پایه، مشابهت قلم-قلم‌ها، کاربر-کاربرها، و کاربر-قلم‌ها را اندازه‌گیری می‌کنیم. به کمک این ماتریس مشابهت، کاربرها و قلم‌ها را خوشه‌بندی کرده و سپس برای هر کاربر، کاربرها و قلم‌های شبیه به آن را به‌عنوان یک ویژگی جدید در پروفایل کاربر ذخیره می‌نماییم. این کار به ما کمک می‌کند که در آینده، سرعت یافتن کاربرهای مشابه و قلم‌های مشابه را بالا ببریم. در حقیقت بر اساس این ویژگی، سرعت کل کار را افزایش داده‌ایم. از آنجایی که ما هدف خود را ساختن سامانه‌ای که یک موازنه بین دو معیار دقت و سرعت را برقرار کند قرار داده‌ایم، با استفاده از یک مجموعه داده واقعی، از این دو معیار جهت ارزیابی سامانه پیشنهادی استفاده می‌کنیم. نتایج مقایسه‌ی روش پیشنهادی ما با برخی روش‌های مشابه به‌روز ارائه شده در این حوزه (با استفاده از یک مجموعه داده یکسان) حاکی از آن است که روش ما از روش‌های سریع، کندتر است، اما از آنها دقیقتر می‌باشد. همچنین این نتایج بیانگر این موضوع است که روش پیشنهادی از روش‌های دقیق، سریعتر و کیفیت آن نیز قابل رقابت و یا حتی بهتر است.
 
شماره‌ی مقاله: 12
متن کامل [PDF 1858 kb]   (263 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: مقالات پردازش متن
دریافت: 1402/2/3 | پذیرش: 1402/10/8 | انتشار: 1402/10/24 | انتشار الکترونیک: 1402/10/24

فهرست منابع
1. [1] E. Rich, "User modeling via stereotypes," Cognitive science, vol. 3, no. 4, pp. 329-354, 1979.
2. [2] F. McSherry and I. Mironov, "Differentially private recommender systems: Building privacy into the netflix prize contenders," in Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, 2009: ACM, pp. 627-636.
3. [3] S. S. Anand and B. Mobasher, "Intelligent techniques for web personalization," in Proceedings of the 2003 international conference on Intelligent Techniques for Web Personalization, 2003: Springer-Verlag, pp. 1-36.
4. [4] C.-P. Wei, C.-S. Yang, and H.-W. Hsiao, "A collaborative filtering-based approach to personalized document clustering," Decision Support Systems, vol. 45, no. 3, pp. 413-428, 2008.
5. [5] M. López-Nores et al., "MiSPOT: dynamic product placement for digital TV through MPEG-4 processing and semantic reasoning," Knowledge and Information Systems, vol. 22, no. 1, pp. 101-128, 2010.
6. [6] L. Liu, N. Mehandjiev, and D.-L. Xu, "Multi-criteria service recommendation based on user criteria preferences," in Proceedings of the fifth ACM conference on Recommender systems, 2011: ACM, pp. 77-84.
7. [7] J. B. Schafer, D. Frankowski, J. Herlocker, and S. Sen, "Collaborative filtering recommender systems," in The adaptive web: Springer, 2007, pp. 291-324.
8. [8] L.-C. Cheng and H.-A. Wang, "A fuzzy recommender system based on the integration of subjective preferences and objective information," Applied Soft Computing, vol. 18, pp. 290-301, 2014.
9. [9] M. Nilashi, O. bin Ibrahim, and N. Ithnin, "Hybrid recommendation approaches for multi-criteria collaborative filtering," Expert Systems with Applications, vol. 41, no. 8, pp. 3879-3900, 2014.
10. [10] S. S. Anand, P. Kearney, and M. Shapcott, "Generating semantically enriched user profiles for web personalization," ACM Transactions on Internet Technology (TOIT), vol. 7, no. 4, p. 22, 2007.
11. [11] C. Porcel, C. Martinez-Cruz, J. Bernabé-Moreno, Á. Tejeda-Lorente, and E. Herrera-Viedma, "Integrating ontologies and fuzzy logic to represent user-trustworthiness in recommender systems," Procedia Computer Science, vol. 55, pp. 603-612, 2015.
12. [12] P. Giaretta and N. Guarino, "Ontologies and knowledge bases towards a terminological clarification," Towards very large knowledge bases: knowledge building & knowledge sharing, vol. 25, no. 32, pp. 307-317, 1995.
13. [13] J. S. Breese, D. Heckerman, and C. Kadie, "Empirical analysis of predictive algorithms for collaborative filtering," in Proceedings of the Fourteenth conference on Uncertainty in artificial intelligence, 1998: Morgan Kaufmann Publishers Inc., pp. 43-52.
14. [14] X. Su and T. M. Khoshgoftaar, "A survey of collaborative filtering techniques," Advances in artificial intelligence, vol. 2009, p. 4, 2009.
15. [15] B. M. Sarwar, G. Karypis, J. Konstan, and J. Riedl, "Recommender systems for large-scale e-commerce: Scalable neighborhood formation using clustering," in Proceedings of the fifth international conference on computer and information technology, 2002, vol. 1, pp. 291-324.
16. [16] T. Hofmann and J. C. Puzicha, "System and method for personalized search, information filtering, and for generating recommendations utilizing statistical latent class models," ed: Google Patents, 2004.
17. [17] Y. Koren, R. Bell, and C. Volinsky, "Matrix factorization techniques for recommender systems," Computer, vol. 42, no. 8, 2009.
18. [18] D. Zhou et al., "Learning multiple graphs for document recommendations," in Proceedings of the 17th international conference on World Wide Web, 2008: ACM, pp. 141-150.
19. [19] S. Gong, "A collaborative filtering recommendation algorithm based on user clustering and item clustering," JSW, vol. 5, no. 7, pp. 745-752, 2010.
20. [20] Y. He, S. Yang, and C. Jiao, "A hybrid collaborative filtering recommendation algorithm for solving the data sparsity," in Computer Science and Society (ISCCS), 2011 International Symposium on, 2011: IEEE, pp. 118-121.
21. [21] H. J. Sadaei, R. Enayatifar, M. H. Lee, and M. Mahmud, "A hybrid model based on differential fuzzy logic relationships and imperialist competitive algorithm for stock market forecasting," Applied Soft Computing, vol. 40, pp. 132-149, 2016.
22. [22] S. K. Shinde and U. Kulkarni, "Hybrid personalized recommender system using centering-bunching based clustering algorithm," Expert Systems with Applications, vol. 39, no. 1, pp. 1381-1387, 2012.
23. [23] P. Wang, "A personalized collaborative recommendation approach based on clustering of customers," Physics Procedia, vol. 24, pp. 812-816, 2012.
24. [24] N. Guarino, D. Oberle, and S. Staab, "What is an ontology?," in Handbook on ontologies: Springer, 2009, pp. 1-17.
25. [25] T. R. Gruber, "Toward principles for the design of ontologies used for knowledge sharing?," International journal of human-computer studies, vol. 43, no. 5-6, pp. 907-928, 1995.
26. [26] W. Borst, "Construction of Engineering," ed: Ontologies, University of Tweenty, Enschede, NL-Center for Telematica and Information Technology, 1997.
27. [27] A. Flahive, B. O. Apduhan, J. W. Rahayu, and D. Taniar, "Large scale ontology tailoring and simulation in the Semantic Grid Environment," International Journal of Metadata, Semantics and Ontologies, vol. 1, no. 4, pp. 265-281, 2006.
28. [28] G. Antoniou and F. Van Harmelen, A semantic web primer. MIT press, 2004.
29. [29] S. E. Middleton, N. R. Shadbolt, and D. C. De Roure, "Ontological user profiling in recommender systems," ACM Transactions on Information Systems (TOIS), vol. 22, no. 1, pp. 54-88, 2004.
30. [30] S. E. Middleton, D. De Roure, and N. R. Shadbolt, "Ontology-based recommender systems," in Handbook on ontologies: Springer, 2009, pp. 779-796.
31. [31] N. Guarino, C. Masolo, and G. Vetere, "Ontoseek: Content-based access to the web," IEEE Intelligent Systems and their Applications, vol. 14, no. 3, pp. 70-80, 1999.
32. [32] M. Craven, A. McCallum, D. PiPasquo, T. Mitchell, and D. Freitag, "Learning to extract symbolic knowledge from the World Wide Web," Carnegie-mellon univ pittsburgh pa school of computer Science, 1998.
33. [33] D. Godoy and A. Amandi, "User profiling for web page filtering," IEEE Internet computing, vol. 9, no. 4, pp. 56-64, 2005.
34. [34] S. Gauch, J. Chaffee, and A. Pretschner, "Ontology-based personalized search and browsing," Web Intelligence and Agent Systems: An international Journal, vol. 1, no. 3, 4, pp. 219-234, 2003.
35. [35] M. I. Martín-Vicente, A. Gil-Solla, M. Ramos-Cabrer, J. J. Pazos-Arias, Y. Blanco-Fernández, and M. López-Nores, "A semantic approach to improve neighborhood formation in collaborative recommender systems," Expert Systems with Applications, vol. 41, no. 17, pp. 7776-7788, 2014.
36. [36] A. Sieg, B. Mobasher, and R. Burke, "Improving the effectiveness of collaborative recommendation with ontology-based user profiles," in proceedings of the 1st International Workshop on Information Heterogeneity and Fusion in Recommender Systems, 2010: ACM, pp. 39-46.
37. [37] I. Cantador, A. Bellogín, and P. Castells, "A multilayer ontology-based hybrid recommendation model," Ai Communications, vol. 21, no. 2-3, pp. 203-210, 2008.
38. [38] Y. Deng, Z. Wu, C. Tang, H. Si, H. Xiong, and Z. Chen, "A hybrid movie recommender based on ontology and neural networks," in Proceedings of the 2010 IEEE/ACM Int'l Conference on Green Computing and Communications & Int'l Conference on Cyber, Physical and Social Computing, 2010: IEEE Computer Society, pp. 846-851.
39. [39] R. Burke, "Hybrid web recommender systems," in The adaptive web: Springer, 2007, pp. 377-408.
40. [40] L. Zhuhadar, O. Nasraoui, R. Wyatt, and E. Romero, "Multi-model ontology-based hybrid recommender system in e-learning domain," in Web Intelligence and Intelligent Agent Technologies, 2009. WI-IAT'09. IEEE/WIC/ACM International Joint Conferences on, 2009, vol. 3: IEEE, pp. 91-95.
41. [41] A. Moreno, A. Valls, D. Isern, L. Marin, and J. Borràs, "Sigtur/e-destination: ontology-based personalized recommendation of tourism and leisure activities," Engineering Applications of Artificial Intelligence, vol. 26, no. 1, pp. 633-651, 2013.
42. [42] J. Lu, Q. Shambour, Y. Xu, Q. Lin, and G. Zhang, "BizSeeker: a hybrid semantic recommendation system for personalized government-to-business e-services," Internet Research, vol. 20, no. 3, pp. 342-365, 2010.
43. [43] C.-N. Ziegler, S. M. McNee, J. A. Konstan, and G. Lausen, "Improving recommendation lists through topic diversification," in Proceedings of the 14th international conference on World Wide Web, 2005: ACM, pp. 22-32.
44. [44] T.-N. Pham, T.-H. Vuong, T.-H. Thai, M.-V. Tran, and Q.-T. Ha, "Sentiment Analysis and User Similarity for Social Recommender System: An Experimental Study," in Information Science and Applications (ICISA) 2016: Springer, 2016, pp. 1147-1156.
45. [45] P. Buitelaar, P. Cimiano, and B. Magnini, Ontology learning from text: methods, evaluation and applications. IOS press, 2005.
46. [46] D. Julong, "Introduction to grey system theory," The Journal of grey system, vol. 1, no. 1, pp. 1-24, 1989.
47. [47] R. Pan, T. Yang, J. Cao, K. Lu, and Z. Zhang, "Missing data imputation by K nearest neighbours based on grey relational structure and mutual information," Applied Intelligence, vol. 43, no. 3, pp. 614-632, 2015.
48. [48] J. M. Jou, P.-Y. Chen, and J.-M. Sun, "The gray prediction search algorithm for block motion estimation," IEEE Transactions on Circuits and Systems for Video Technology, vol. 9, no. 6, pp. 843-848, 1999.
49. [49] S.-L. Su, Y.-C. Su, and J.-F. Huang, "Grey-based power control for DS-CDMA cellular mobile systems," IEEE Transactions on Vehicular Technology, vol. 49, no. 6, pp. 2081-2088, 2000.
50. [50] Q. Song, M. Shepperd, and C. Mair, "Using grey relational analysis to predict software effort with small data sets," in 11th IEEE International Software Metrics Symposium (METRICS'05), 2005: IEEE, pp. 10 pp.-35.
51. [51] S. Zhang, "Nearest neighbor selection for iteratively kNN imputation," Journal of Systems and Software, vol. 85, no. 11, pp. 2541-2552, 2012.
52. [52] C. Zhang, X. Zhu, J. Zhang, Y. Qin, and S. Zhang, "GBKII: An imputation method for missing values," in Pacific-Asia Conference on Knowledge Discovery and Data Mining, 2007: Springer, pp. 1080-1087.
53. [53] J. K. Dixon, "Pattern recognition with partly missing data," IEEE Transactions on Systems, Man, and Cybernetics, vol. 9, no. 10, pp. 617-621, 1979.
54. [54] D. W. Aha and R. L. Goldstone, "Concept learning and flexible weighting," in Proceedings of the fourteenth annual conference of the Cognitive Science Society, 1992: Citeseer, pp. 534-539.
55. [55] Y. Koren, R. Bell, and C. Volinsky, "Matrix factorization techniques for recommender systems," Computer, vol. 42, no. 8, pp. 30-37, 2009.
56. [56] G. H. Golub and C. Reinsch, "Singular value decomposition and least squares solutions," in Linear algebra: Springer, 1971, pp. 134-151.
57. [57] X. Su and T. M. Khoshgoftaar, "Collaborative filtering for multi-class data using belief nets algorithms," in 2006 18th IEEE international conference on Tools with Artificial Intelligence (ICTAI'06), 2006: IEEE, pp. 497-504.
58. [58] G. Shani, D. Heckerman, R. I. Brafman, and C. Boutilier, "An MDP-based recommender system," Journal of Machine Learning Research, vol. 6, no. 9, 2005.
59. [59] T. Hofmann, "Probabilistic latent semantic indexing," in Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval, 1999, pp. 50-57.
60. [60] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman, "Indexing by latent semantic analysis," Journal of the American society for information science, vol. 41, no. 6, pp. 391-407, 1990.
61. [61] L. M. Chan, S. S. Intner, and J. Weihs, Guide to the Library of Congress classification. ABC-CLIO, 2016.
62. [62] C. J. Becerra, S. Jimenez, and A. F. Gelbukh, "Towards User Profile-based Interfaces for Exploration of Large Collections of Items," Decisions@ RecSys, vol. 13, pp. 9-16, 2013.
63. [63] S. Jimenez, F. A. Gonzalez, and A. Gelbukh, "Mathematical properties of soft cardinality: Enhancing Jaccard, Dice and cosine similarity measures with element-wise distance," Information Sciences, vol. 367, pp. 373-389, 2016.
64. [64] M. A. Hearst, "Automatic acquisition of hyponyms from large text corpora," in Proceedings of the 14th conference on Computational linguistics-Volume 2, 1992: Association for Computational Linguistics, pp. 539-545.
65. [65] C.-F. Tsai and C. Hung, "Cluster ensembles in collaborative filtering recommendation," Applied Soft Computing, vol. 12, no. 4, pp. 1417-1425, 2012.
66. [66] L. H. Son, "Dealing with the new user cold-start problem in recommender systems: A comparative review," Information Systems, vol. 58, pp. 87-104, 2016.
67. [67] V. Vanitha and P. Krishnan, "A modified ant colony algorithm for personalized learning path construction," Journal of Intelligent & Fuzzy Systems, vol. 37, no. 5, pp. 6785-6800, 2019.
68. [68] N. Silva, D. Carvalho, A. C. Pereira, F. Mourão, and L. Rocha, "The pure cold-start problem: A deep study about how to conquer first-time users in recommendations domains," Information Systems, vol. 80, pp. 1-12, 2019.
69. [69] J. R. Almeida, E. Monteiro, L. B. Silva, A. P. Sierra, and J. L. Oliveira, "A recommender system to help discovering cohorts in rare diseases," in 2020 IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS), 2020: IEEE, pp. 25-28.
70. [70] J. Zhong, H. Xie, and F. L. Wang, "The research trends in recommender systems for e-learning: A systematic review of SSCI journal articles from 2014 to 2018," Asian Association of Open Universities Journal, 2019.
71. [71] L. Romero, C. Saucedo, M. Caliusco, and M. Gutiérrez, "Supporting self-regulated learning and personalization using ePortfolios: a semantic approach based on learning paths," International Journal of Educational Technology in Higher Education, vol. 16, no. 1, pp. 1-16, 2019.
72. [72] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, "Analysis of recommendation algorithms for e-commerce," in Proceedings of the 2nd ACM Conference on Electronic Commerce, 2000, pp. 158-167.
73. [73] P. Cremonesi, Y. Koren, and R. Turrin, "Performance of recommender algorithms on top-n recommendation tasks," in Proceedings of the fourth ACM conference on Recommender systems, 2010, pp. 39-46.
74. [74] R. Bambini, P. Cremonesi, and R. Turrin, "A recommender system for an iptv service provider: a real large-scale production environment," in Recommender systems handbook: Springer, 2011, pp. 299-331.
75. [75] H. Cui, M. Zhu, and S. Yao, "Ontology-based Top-N Recommendations on New Items with Matrix Factorization," J. Softw., vol. 9, no. 8, pp. 2026-2032, 2014.
76. [76] P. Pirasteh, D. Hwang, and J. J. Jung, "Exploiting matrix factorization to asymmetric user similarities in recommendation systems," Knowledge-Based Systems, vol. 83, pp. 51-57, 2016.
77. [77] Y. Koren, "Factorization meets the neighborhood: a multifaceted collaborative filtering model," in Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining, 2008, pp. 426-434.
78. [78] K. Ji, R. Sun, X. Li, and W. Shu, "Improving matrix approximation for recommendation via a clustering-based reconstructive method," Neurocomputing, vol. 173, pp. 912-920, 2016.
79. [79] S. Chen and Y. Peng, "Matrix factorization for recommendation with explicit and implicit feedback," Knowledge-Based Systems, vol. 158, pp. 109-117, 2018.
80. [80] K. Bagherifard, M. Rahmani, M. Nilashi, and V. Rafe, "Performance improvement for recommender systems using ontology," Telematics and Informatics, vol. 34, no. 8, pp. 1772-1792, 2017.
81. [81] M. Nilashi, O. Ibrahim, and K. Bagherifard, "A recommender system based on collaborative filtering using ontology and dimensionality reduction techniques," Expert Systems with Applications, vol. 92, pp. 507-520, 2018.
82. [82] P. Lops, M. d. Gemmis, and G. Semeraro, "Content-based recommender systems: State of the art and trends," Recommender systems handbook, pp. 73-105, 2011.
83. ]83[ بحرانی، پیام، مینایی بیدگلی، بهروز، پروین، حمید، میرزارضایی، میترا، و کشاورز، احمد. (1400). ارائه یک سامانه پیشنهادگر حافظه پایه ترکیبی با استفاده از هستان شناسی و محتوا. پردازش علائم و داده ها، 18(4 (50 پیاپی) )، 89-124.

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این تارنما متعلق به فصل‌نامة علمی - پژوهشی پردازش علائم و داده‌ها است.