دوره 21، شماره 4 - ( 12-1403 )                   جلد 21 شماره 4 صفحات 96-85 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

rastgoo M, Ghaffari H R. A location recommender in social networks based on location based on deep learning. JSDP 2025; 21 (4) : 6
URL: http://jsdp.rcisp.ac.ir/article-1-1365-fa.html
راستگو محمد، غفاری حمید رضا. توصیه‌کننده مکانی در شبکه‌های اجتماعی مکان‌مبنا مبتنی بر یادگیری عمیق. پردازش علائم و داده‌ها. 1403; 21 (4) :85-96

URL: http://jsdp.rcisp.ac.ir/article-1-1365-fa.html


استادیار دانشکده مهندسی کامپیوتر، واحد فردوس، دانشگاه آزاد اسلامی، فردوس، ایران
چکیده:   (474 مشاهده)

پتانسیل شبکه‌های اجتماعی برای استخراج آمار و اطلاعات در مورد رفتار کاربران مورد توجه بسیاری از پژوهش‌گران قرار گرفته‌است. با توسعه و محبوبیت این شبکه‌ها، بسیاری از انسان‌ها ترجیح می‌دهند تجربیات خود را به اشتراک بگذارند. با جمع‌آوری داده‌های رفتاری کاربران، فرصت‌های منحصر به ‌فردی برای درک الگوهای حرکتی و پیش‌بینی رفتار مکانی آن‌ها ایجاد می‌شود. یک نمونه از شبکه‌های اجتماعی مبتنی بر مکان Foursquare است. در این شبکه‌ها محتوای تولیدشده توسط کاربر در موقعیت مکانی ثبت می‌شود و مکان‌های جدید را به کاربران توصیه می‌کند. این شبکه‌ها امکان ثبت و اشتراک‌گذاری موقعیت مکانی کاربران را فراهم می‌کنند. این پلتفرم‌ها حجم عظیمی از داده‌های رفتاری را تولید می‌کنند که می‌توان برای درک الگوهای حرکتی و پیش‌بینی رفتار آینده کاربران استفاده کرد. این موضوع کمک شایانی در زمینه کسب‌وکارها و خدمت به امور جهانگردی دارد. برای بهبود دقت پیش‌بینی مکان بعدی در ابتدا نیاز است دوستان و یا افرادی که بیشترین نقاط مشترک را با هم دارند شناسایی شوند؛ بنابراین عواملی شامل تأثیر دوستان، تاریخچه بازدیدها و ویژگی‌های زمانی - مکانی در پیش‌بینی انتخاب مکان بعدی کاربر نقش بسزایی دارد؛ لذا اهمیت درنظرگرفتن ویژگی‌های زمانی در فرایند پیش‌بینی بسیار مهم است. روش پیشنهادی دقت روش‌های یادگیری ماشین و شبکه‌های عصبی بازگشتی را برای پیش‌بینی مکان بعدی کاربران مورد بررسی قرار داده‌است. در این مقاله با استفاده از الگوریتم RandomForest داده‌ها مورد بررسی قرار گرفته‌اند تا نقش داده‌ها در دسته‌بندی مشخص شود. سپس با استفاده از شبکه‌های عصبی بازگشتی LSTM ، RNN و GRU عمل پیش‌بینی عملکرد کاربران مورد ارزیابی واقع شد. در این راستا شبکه عصبی بازگشتی LSTM با دقت 71 درصد در میان شبکه‌های عصبی بازگشتی بیشترین دقت را داشته است. این پژوهش نشان می‌دهد که ترکیب هوش مصنوعی و داده‌های مکانی- زمانی می‌تواند درک عمیقی از رفتارهای انسانی در فضاهای شهری و رقمی ارائه دهد.

شماره‌ی مقاله: 6
متن کامل [PDF 1094 kb]   (141 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: مقالات پردازش داده‌های رقمی
دریافت: 1401/12/26 | پذیرش: 1403/9/14 | انتشار: 1403/12/28 | انتشار الکترونیک: 1403/12/28

فهرست منابع
1. Zheng, Yu, and Xiaofang Zhou."Computing with Spatial Trajectories". Springer Science & Business Media, 2011. [DOI:10.1007/978-1-4614-1629-6]
2. Rahimi, Seyyed Mohammadreza, and Xin Wang. "Location Recommendation Based on Periodicity of Human Activities and Location Categories." Paper presented at the Advances in Knowledge Discovery and Data Mining: 17th Pacific-Asia Conference, PAKDD 2013, Gold Coast, Australia, April 14-17, 2013, Proceedings, Part II 17, 2013.
3. Beeharee, Ashweeni, and Anthony Steed. "Exploiting Real World Knowledge in Ubiquitous Applications." Personal and Ubiquitous Computing 11 , 2007. [DOI:10.1007/s00779-006-0091-6]
4. Simon, Rainer, and Peter Fröhlich. "A Mobile Application Framework for the Geospatial Web." Paper presented at the Proceedings of the 16th international conference on World Wide Web, 2007. [DOI:10.1145/1242572.1242624]
5. Park, Moon-Hee, Jin-Hyuk Hong, and Sung-Bae Cho. "Location-Based Recommendation System Using Bayesian User's Preference Model in Mobile Devices." Paper presented at the Ubiquitous Intelligence and Computing: 4th International Conference, UIC 2007, Hong Kong, China, July 11-13, 2007. Proceedings 4, 2007.
6. AlZoman, Razan M, and Mohammed JF Alenazi. "A Comparative Study of Traffic Classification Techniques for Smart City Networks." Sensors 21, no. 14 ,2021 [DOI:10.3390/s21144677] [PMID] []
7. Jia, Yuanxin, Yong Ge, Feng Ling, Xian Guo, Jianghao Wang, Le Wang, Yuehong Chen, and Xiaodong Li. "Urban Land Use Mapping by Combining Remote Sensing Imagery and Mobile Phone Positioning Data." Remote Sensing 10, no. 3 ,2018 [DOI:10.3390/rs10030446]
8. Arruda, Henrique F de, Alexandre Benatti, César Henrique Comin, and Luciano da F Costa. "Learning Deep Learning." Revista Brasileira de Ensino de Física 44 ,2022 [DOI:10.1590/1806-9126-RBEF-2022-0101]
9. Rumelhart, David E, Geoffrey E Hinton, and Ronald J Williams. "Learning Representations by Back-Propagating Errors." nature 323, no. 6088 ,1986 [DOI:10.1038/323533a0]
10. Liu, Yeqi, Chuanyang Gong, Ling Yang, and Yingyi Chen. "Dstp-Rnn: A Dual-Stage Two-Phase Attention-Based Recurrent Neural Network for Long-Term and Multivariate Time Series Prediction." Expert Systems with Applications 143 ,2020 [DOI:10.1016/j.eswa.2019.113082]
11. Liu, Pengfei, Xipeng Qiu, and Xuanjing Huang. "Recurrent Neural Network for Text Classification with Multi-Task Learning." arXiv preprint arXiv:1605.05101 ,2016
12. Hochreiter, S. "Long Short-Term Memory." Neural Computation MIT-Press ,1997 [DOI:10.1162/neco.1997.9.8.1735] [PMID]
13. Chung, Junyoung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. "Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling." arXiv preprint arXiv:1412.3555 ,2014
14. Sagheer, Alaa, and Mostafa Kotb. "Time Series Forecasting of Petroleum Production Using Deep Lstm Recurrent Networks." Neurocomputing 323 ,2019 [DOI:10.1016/j.neucom.2018.09.082]
15. Hermans, Michiel, and Benjamin Schrauwen. "Training and Analysing Deep Recurrent Neural Networks." Advances in neural information processing systems 26 ,2013
16. A. Graves, "Supervised sequence labelling," in Supervised Sequence Labelling with Recurrent Neural Networks:Springer, 2012 [DOI:10.1007/978-3-642-24797-2]
17. Chung, Junyoung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. "Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling." arXiv preprint arXiv:1412.3555 ,2014
18. Luceri, Luca, Torsten Braun, and Silvia Giordano. "Analyzing and Inferring Human Real-Life Behavior through Online Social Networks with Social Influence Deep Learning." Applied network science 4, no. 1,2019 [DOI:10.1007/s41109-019-0134-3]
19. Abbasi, Omid Reza, and Ali Asghar Alesheikh. "Exploring the Potential of Location-Based Social Networks Data as Proxy Variables in Collective Human Mobility Prediction Models." Arabian Journal of Geosciences 11,2018 [DOI:10.1007/s12517-018-3496-4]
20. Liu, Yang, and An-bo Wu. "Poi Recommendation Method Using Deep Learning in Location‐Based Social Networks." Wireless Communications and Mobile Computing 2021, no. 1 ,2021 [DOI:10.1155/2021/9120864]
21. Liao, Jianxin, Tongcun Liu, Meilian Liu, Jingyu Wang, Yulong Wang, and Haifeng Sun. "Multi-Context Integrated Deep Neural Network Model for Next Location Prediction." IEEE access 6 ,2018 [DOI:10.1109/ACCESS.2018.2827422]
22. Kanzawa, Yuta, Toyotaro Suzumura, Hiroki Kanezashi, Jiawei Yong, and Shintaro Fukushima. "Multimodal Point-of-Interest Recommendation." arXiv preprint arXiv:2410.03265 ,2024
23. Wan, Jun, Cheng Chi, Haoyuan Yu, Yang Liu, Xiangrui Xu, Hongmei Lyu, and Wei Wang. "Fed-Attgru Privacy-Preserving Federated Interest Recommendation." Paper presented at the Proceedings of the ACM Turing Award Celebration Conference-China ,2024 [DOI:10.1145/3674399.3674450]
24. انارکی, ریاحی«روش تکاملی بهبود انتخاب الگوریتم در سیستم‌های توصیه‌گر فیلترینگ مشارکتی»، پردازش علائم و داده‌ها، 2023
25. Anaraki, Riahi "Evolutionary Method for Improving Algorithm Selection in Collaborative Filtering Recommender Systems", Signal and Data l Processing,2023
26. محمود دی پیر، احسان بیات، «تشخیص انجمن‌ها در شبکه‌های اجتماعی با استفاده از الگوریتم جستجوی هارمونی گسسته»، پردازش علائم و داده‌ها، 2023
27. Mahmoud De Pierre, Ehsan Bayat, "Detecting Associations in Social Networks Using Discrete Harmony Search Algorithm", Signal and Data l Processing, 2023
28. Shukla, Pushpak, and Shailendra Shukla. "Exploring the Potential of Deep Regression Model for Next-Location Prediction." Knowledge and Information Systems, 1-32, 2024
29. Meena, Gaurav, Ajay Indian, Krishna Kumar Mohbey, and Kunal Jangid. "Point of Interest Recommendation System Using Sentiment Analysis." Journal of Information Science Theory and Practice 12, no. 2 ,2024

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این تارنما متعلق به فصل‌نامة علمی - پژوهشی پردازش علائم و داده‌ها است.