دوره 20، شماره 2 - ( 6-1402 )                   جلد 20 شماره 2 صفحات 79-69 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Motamed S, Askari E. Detection of handgun using 3D convolutional neural network model (3DCNNs). JSDP 2023; 20 (2) : 5
URL: http://jsdp.rcisp.ac.ir/article-1-1262-fa.html
معتمد سارا، عسکری الهام. تشخیص اسلحه دستی بااستفاده از مدل شبکه‎‎های عصبی کانولوشنال سه بعدی. پردازش علائم و داده‌ها. 1402; 20 (2) :69-79

URL: http://jsdp.rcisp.ac.ir/article-1-1262-fa.html


دانشگاه آزاد اسلامی
چکیده:   (476 مشاهده)
از آنجاییکه رفتار افراد در ویدئوها بصورت سیگنالهای سه بعدی است و جستجوی یک عمل خاص بسیار دشوار می‎باشد، لذا نیاز به یک تکنیک مناسب جهت تشخیص خودکار دزدان مسلح در ویدئو‎های امنیتی در حال ضبط می‎باشد. در این مقاله روشی سریع و کارا جهت شناسایی موقعیت افراد و سپس تشخیص اسلحه در دست آنها، با استخراج فریم‌های تصاویر برگرفته از ویدئوها و بدون حذف نقاط اصلی، ارائه شده است. در مرحله نخست و بمنظور استخراج فریم‌های تصاویر برگرفته از ویدئوها، الگوریتم جداسازی با نرخ فریم مشخص اعمال خواهد شد و تمامی تصاویر در یک پوشه قرار می‎گیرند. سپس روی تمامی تصاویر بدست آمده طبقهبند(HC)  Haar Cascade اعمال شده تا نقاط کلیدی یا فریم‌های مربوط به تصاویر کل بدن استخراج شوند و باقی پسزمینهها از تصاویر حذف گردند. در انتها، نمونه‌های هر ویدئو در قالب ماتریس چهار بعدی شامل تعداد دنباله فریم‌های هر ویدئو، عرض، ارتفاع و تعداد کانال تصویر به شبکه 3DCNNs ارسال می‌شود تا سلاح در تصاویر شناسایی شوند. لذا نوآوری مقاله ترکیب طبقه‎بند HCو  3DCNNs بمنظور افزایش سرعت و کارایی تشخیص اسلحه می‎باشد. همچنین بمنظور بررسی دقت مدل پیشنهادی، از پارامترهای نرخ مثبت صحیح و مثبت کاذب، مقدار پیش بینی مثبت و نرخ تشخیص کاذب استفاده میشود.
 
شماره‌ی مقاله: 5
متن کامل [PDF 647 kb]   (218 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: مقالات پردازش تصویر
دریافت: 1400/5/24 | پذیرش: 1402/4/17 | انتشار: 1402/7/30 | انتشار الکترونیک: 1402/7/30

فهرست منابع
1. [1] Enrquez, F., Soria, L. M., Alvarez-Garca, J. A., Caparrini, F. S., Velasco, F., Deniz, O. , Vallez, N. "Vision and crowdsensing technology for an optimal response in physical-security", International Conference on Computational Science, Springer, pp. 15 - 26, 2019. [DOI:10.1007/978-3-030-22750-0_2]
2. [2] Tessler, R. A., Mooney, S. J., Witt, C. E., O'Connell, K., Jenness, J., Vavilala, M. S., Rivara, F. P. "Use of _rearms in terrorist attacks: di_erences between the United States, Canada, Europe, Australia, and New Zealand", JAMA internal medicine. Vol. 177, pp.1865 - 1868. 2017. [DOI:10.1001/jamainternmed.2017.5723] [PMID] []
3. [3] Nercessian, S., Panetta, K., Agaian, S. "Automatic detection of potential threat objects in x-ray luggage scan images", IEEE Conference on Technologies for Homeland Security, IEEE. pp. 504 - 509. 2008. [DOI:10.1109/THS.2008.4534504]
4. [4] Xiao, Z., Lu, X., Yan, J., Wu, L., Ren, L. "Automatic detection of concealed pistols using passive millimeter wave imaging", IEEE International Conference on Imaging Systems and Techniques (IST), IEEE. pp. 1 - 4. 2015. [DOI:10.1109/IST.2015.7294538]
5. [5] Flitton, G., Breckon, T. P., Megherbi, N. "A comparison of 3D interest point descriptors with application to airport baggage object detection in complex CT imagery", Pattern Recognition. 2420 - 2436. 2013. [DOI:10.1016/j.patcog.2013.02.008]
6. [6] Tiwari, R. K., Verma, G. K. "A computer vision based framework for visual gun detection using Harris interest point detector", Procedia Computer Science. Vol. 54, pp. 703 - 712. 2015. [DOI:10.1016/j.procs.2015.06.083]
7. [7] Halima, N. B., Hosam, O. "Bag of words based surveillance system using support vector machines", Int. J. Secur. Appl. Vol. 10, pp. 331- 346. 2016. [DOI:10.14257/ijsia.2016.10.4.30]
8. [8] Gelana, F., Yadav, A. "Firearm detection from surveillance cameras using image processing and machine learning techniques", Smart Innovations in Communication and Computational Sciences, Springer. pp. 25- 34. 2019. [DOI:10.1007/978-981-13-2414-7_3]
9. [9] Girshick, R. "Fast R-CNN", Proceedings of the IEEE international conference on computer vision. pp. 1440 - 1448. 2015. [DOI:10.1109/ICCV.2015.169]
10. [10] Ren, S., He, K., Girshick, R., Sun, J. "Faster R-CNN: Towards real-time object detection with region proposal networks", Advances in Neural Information Processing Systems. pp. 91 - 99. 2015.
11. [11] Verma, G. K., Dhillon, A. "A handheld gun detection using faster R-CNN deep learning", Proceedings of the 7th International Conference on Computer and Communication Technology. pp. 84 - 88. 2017.
12. [12] IMFDB: Internet Movie Firearms Database, http://www.imfdb.org/ wiki/Main_Page, 2020.
13. [13] Olmos, R., Tabik, S., Herrera, F. "Automatic handgun detection alarm in videos using deep learning", Neurocomputing. Vol. 275, pp. 66 - 72. 2018. [DOI:10.1016/j.neucom.2017.05.012]
14. [14] Redmon, J., Divvala, S., Girshick, R., Farhadi, A. "You only look once: Uni_ed, real-time object detection", Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 779 - 788. 2016. [DOI:10.1109/CVPR.2016.91]
15. [15] Redmon, J., Farhadi, A. "Yolo9000: better, faster, stronger", Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 7263 - 7271. 2017. [DOI:10.1109/CVPR.2017.690]
16. [16] Farhadi, A., Redmon, J. "Yolov3: An incremental improvement", Computer Vision and Pattern Recognition. 2018.
17. [17] de Azevedo Kanehisa, R. F., de Almeida Neto, A. "Firearm detection using convolutional neural networks", ICAART. Vol. 2, pp. 707 - 714. 2019. [DOI:10.5220/0007397707070714]
18. [18] Susarla, P., Agrawal, U., Jayagopi, D. B. "Human weapon-Activity recognition in surveillance videos using structural-RNN," MedPRAI '18, Rabat, Morocco, pp.101-108. 2018. [DOI:10.1145/3177148.3180080]
19. [19] Qi., D, Tan., W, Liu., Z, Yao., Q, Liu., J, "A dataset and system for real-time gun detection in surveillance video using deep learning ," IEEE International Conference on Systems, Man, and Cybernetics (SMC). 2021. [DOI:10.1109/SMC52423.2021.9659207]
20. [20] Narejo, S., Pandey, B., Esenarro vargas, D., Rodriguez, R., Anjum, M.R. "Weapon detection using YOLOV3 for smart surveillance system," Mathematical Problems in Engineering, pp. 1-9. 2021. [DOI:10.1155/2021/9975700]
21. [21] Velasco-Mata., A, Ruiz-Santaquiteria., J, Vallez., N, Deniz., O, "Using human pose information for handgun detection," Neural Computing and Applications, 33: pp.17273-17286. 2021. [DOI:10.1007/s00521-021-06317-8]
22. [22] Pishchulin, L., Jain, A., Andriluka, M., Thormahlen, T., Schiele, B. "Articulated people detection and pose estimation: Reshaping the future", IEEE Conference on Computer Vision and Pattern Recognition, IEEE. pp. 3178 - 3185. 2012. [DOI:10.1109/CVPR.2012.6248052]
23. [23] Gkioxari, G., Hariharan, B., Girshick, R., Malik, J. "Using k-pose lets for detecting people and localizing their key points", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 3582 - 3589. 2014. [DOI:10.1109/CVPR.2014.458]
24. [24] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y. A. "OpenPose: real time multi-person 2D pose estimation using Part Annity Fields", IEEE Transactions on Pattern Analysis and Machine Intelligence. Vol. 43, pp.172 - 186. 2019. [DOI:10.1109/TPAMI.2019.2929257] [PMID]
25. [25] Thurau, C., Hlav_ac, V. "Pose primitive based human action recognition in videos or still images", in: 2008 IEEE Conference on Computer Vision and Pattern Recognition, IEEE. pp. 1 - 8. 2008. [DOI:10.1109/CVPR.2008.4587721]
26. [26] Reiss, A., Hendeby, G., Bleser, G., Stricker, D. "Activity recognition using biomechanical model based pose estimation", European Conference on Smart Sensing and Context, Springer. pp. 42 - 55. 2010. [DOI:10.1007/978-3-642-16982-3_4]
27. [27] Eiert, S. "Activity Recognition from 2D pose using an LSTM RNN", 2020.
28. [28] Luvizon, D. C., Picard, D., Tabia, H. "2D/3D pose estimation and action recognition using multitask deep learning", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 5137 - 5146. 2018. [DOI:10.1109/CVPR.2018.00539]
29. [29] Velasco-Mata, A. "Human pose information as an improvement factor for handgun detection", Master's thesis, Escuela Superior de Inform_atica (UCLM), 2020.
30. [30] Puad, A., Tahir2, M. D. "Human Gait Silhouettes Extraction Using Haar Cascade Classifier on OpenCV", International Conference on Modelling & Simulation. Vol. 25, pp. 105 - 111. 2017.
31. [31] Grega, M., Matiola'nski, A., Guzik, P., Leszczuk, M. "Automated detection of firearms and knives in a CCTV image", Sensors. Vol. 16. 2017. [DOI:10.3390/s16010047] [PMID] []
32. [32] http://www.imfdb.org/ wiki/Main_Page.
33. [33] Schmidt, A., Kasiński, A. "The performance of the haar cascade classifiers applied to the face and eyes detection," in Computer Recognition Systems 2, vol. 45, pp. 816-823, 2007. [DOI:10.1007/978-3-540-75175-5_101]
34. [34] Lienhart, R., Kuranov, A., Pisarevsky, V., Report, M. R. L. T. "Empirical Analysis of Detection Cascades of Boosted Classifiers for Rapid Object Detection." in Joint Pattern Recognition Symposium, pp. 297-304. 2003. [DOI:10.1007/978-3-540-45243-0_39]
35. [35] Paulo Menezes, J., Carlos Barreto, J. "Face Tracking Based On Haar-Like Features And Eigenfaces," in IFAC/EURON Symposium on Intelligent Autonomous Vehicles , pp. 1-6, 2004.
36. [36] Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollar, P., Zitnick, C. L. "Microsoft COCO: Common Objects in Context", European conference on computer vision, Springer. pp. 740 - 755. 2014. [DOI:10.1007/978-3-319-10602-1_48]
37. [37] Almaadeed, N., Elharrouss, O., Q'AlMaadeed,S., Bouridane, A., Beghdadi, A. "A Novel Approach for Robust Multi Human Action Recognition and Summarization based on 3D Convolutional Neural Networks", Computer Vision and Pattern Recognition, pp. 1-12. 2021.

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این تارنما متعلق به فصل‌نامة علمی - پژوهشی پردازش علائم و داده‌ها است.