Volume 20, Issue 2 (9-2023)                   JSDP 2023, 20(2): 69-79 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Motamed S, Askari E. Detection of handgun using 3D convolutional neural network model (3DCNNs). JSDP 2023; 20 (2) : 5
URL: http://jsdp.rcisp.ac.ir/article-1-1262-en.html
Islamic Azad University
Abstract:   (801 Views)
Since the behavior of people in the videos are in 3D signals format and they are long, it is difficult to search for a specific action. Therefore, a suitable technique in live security videos is required to detect ongoing armed thieves to reduce the occurrence of crime and theft. The innovation of this paper is to provide a rapid and efficient method for detecting guns in frames of images taken from videos without deleting the main points. The hierarchy of object recognition is that in order to extract frames from images derived from videos, the separation algorithm will be applied at a specified frame rate and all images will be placed in a folder. Then, video samples are divided into three categories of training, validation and testing, and using Haar Cascade (HC) classification, the frames of whole body images are extracted and the rest of the backgrounds are removed from the images. The reason for choosing this method is that the HC classification is resistant to rotation of images and also this algorithm has shown good performance compared to complex calculations. Therefore, in our proposed model, we will use this algorithm as a whole body diagnosis. This is done by detecting the Region of Interest (ROI) area by cutting the selected areas, followed by subtracting the background to eliminate unwanted backgrounds. All key points of selection and extraction are stored inside a folder. Finally, all images are sent to 3D convolutional Neural Networks (3DCNNs) to detect weapons in the images. Finally, in order to evaluate the performance of the system in terms of accuracy, it is used with correct positive rate parameters, false positive rate, positive prediction value and false detection rate. As can be seen in the results of the tests, the highest gun detection rate is related to the 3DCNNs model with a detection rate of 96.1%, followed by the best detection model rate related to YOLO V3 and with a detection rate of 95.6%.
 
Article number: 5
Full-Text [PDF 647 kb]   (333 Downloads)    
Type of Study: Research | Subject: Paper
Received: 2021/08/15 | Accepted: 2023/07/8 | Published: 2023/10/22 | ePublished: 2023/10/22

References
1. [1] Enrquez, F., Soria, L. M., Alvarez-Garca, J. A., Caparrini, F. S., Velasco, F., Deniz, O. , Vallez, N. "Vision and crowdsensing technology for an optimal response in physical-security", International Conference on Computational Science, Springer, pp. 15 - 26, 2019. [DOI:10.1007/978-3-030-22750-0_2]
2. [2] Tessler, R. A., Mooney, S. J., Witt, C. E., O'Connell, K., Jenness, J., Vavilala, M. S., Rivara, F. P. "Use of _rearms in terrorist attacks: di_erences between the United States, Canada, Europe, Australia, and New Zealand", JAMA internal medicine. Vol. 177, pp.1865 - 1868. 2017. [DOI:10.1001/jamainternmed.2017.5723] [PMID] []
3. [3] Nercessian, S., Panetta, K., Agaian, S. "Automatic detection of potential threat objects in x-ray luggage scan images", IEEE Conference on Technologies for Homeland Security, IEEE. pp. 504 - 509. 2008. [DOI:10.1109/THS.2008.4534504]
4. [4] Xiao, Z., Lu, X., Yan, J., Wu, L., Ren, L. "Automatic detection of concealed pistols using passive millimeter wave imaging", IEEE International Conference on Imaging Systems and Techniques (IST), IEEE. pp. 1 - 4. 2015. [DOI:10.1109/IST.2015.7294538]
5. [5] Flitton, G., Breckon, T. P., Megherbi, N. "A comparison of 3D interest point descriptors with application to airport baggage object detection in complex CT imagery", Pattern Recognition. 2420 - 2436. 2013. [DOI:10.1016/j.patcog.2013.02.008]
6. [6] Tiwari, R. K., Verma, G. K. "A computer vision based framework for visual gun detection using Harris interest point detector", Procedia Computer Science. Vol. 54, pp. 703 - 712. 2015. [DOI:10.1016/j.procs.2015.06.083]
7. [7] Halima, N. B., Hosam, O. "Bag of words based surveillance system using support vector machines", Int. J. Secur. Appl. Vol. 10, pp. 331- 346. 2016. [DOI:10.14257/ijsia.2016.10.4.30]
8. [8] Gelana, F., Yadav, A. "Firearm detection from surveillance cameras using image processing and machine learning techniques", Smart Innovations in Communication and Computational Sciences, Springer. pp. 25- 34. 2019. [DOI:10.1007/978-981-13-2414-7_3]
9. [9] Girshick, R. "Fast R-CNN", Proceedings of the IEEE international conference on computer vision. pp. 1440 - 1448. 2015. [DOI:10.1109/ICCV.2015.169]
10. [10] Ren, S., He, K., Girshick, R., Sun, J. "Faster R-CNN: Towards real-time object detection with region proposal networks", Advances in Neural Information Processing Systems. pp. 91 - 99. 2015.
11. [11] Verma, G. K., Dhillon, A. "A handheld gun detection using faster R-CNN deep learning", Proceedings of the 7th International Conference on Computer and Communication Technology. pp. 84 - 88. 2017.
12. [12] IMFDB: Internet Movie Firearms Database, http://www.imfdb.org/ wiki/Main_Page, 2020.
13. [13] Olmos, R., Tabik, S., Herrera, F. "Automatic handgun detection alarm in videos using deep learning", Neurocomputing. Vol. 275, pp. 66 - 72. 2018. [DOI:10.1016/j.neucom.2017.05.012]
14. [14] Redmon, J., Divvala, S., Girshick, R., Farhadi, A. "You only look once: Uni_ed, real-time object detection", Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 779 - 788. 2016. [DOI:10.1109/CVPR.2016.91]
15. [15] Redmon, J., Farhadi, A. "Yolo9000: better, faster, stronger", Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 7263 - 7271. 2017. [DOI:10.1109/CVPR.2017.690]
16. [16] Farhadi, A., Redmon, J. "Yolov3: An incremental improvement", Computer Vision and Pattern Recognition. 2018.
17. [17] de Azevedo Kanehisa, R. F., de Almeida Neto, A. "Firearm detection using convolutional neural networks", ICAART. Vol. 2, pp. 707 - 714. 2019. [DOI:10.5220/0007397707070714]
18. [18] Susarla, P., Agrawal, U., Jayagopi, D. B. "Human weapon-Activity recognition in surveillance videos using structural-RNN," MedPRAI '18, Rabat, Morocco, pp.101-108. 2018. [DOI:10.1145/3177148.3180080]
19. [19] Qi., D, Tan., W, Liu., Z, Yao., Q, Liu., J, "A dataset and system for real-time gun detection in surveillance video using deep learning ," IEEE International Conference on Systems, Man, and Cybernetics (SMC). 2021. [DOI:10.1109/SMC52423.2021.9659207]
20. [20] Narejo, S., Pandey, B., Esenarro vargas, D., Rodriguez, R., Anjum, M.R. "Weapon detection using YOLOV3 for smart surveillance system," Mathematical Problems in Engineering, pp. 1-9. 2021. [DOI:10.1155/2021/9975700]
21. [21] Velasco-Mata., A, Ruiz-Santaquiteria., J, Vallez., N, Deniz., O, "Using human pose information for handgun detection," Neural Computing and Applications, 33: pp.17273-17286. 2021. [DOI:10.1007/s00521-021-06317-8]
22. [22] Pishchulin, L., Jain, A., Andriluka, M., Thormahlen, T., Schiele, B. "Articulated people detection and pose estimation: Reshaping the future", IEEE Conference on Computer Vision and Pattern Recognition, IEEE. pp. 3178 - 3185. 2012. [DOI:10.1109/CVPR.2012.6248052]
23. [23] Gkioxari, G., Hariharan, B., Girshick, R., Malik, J. "Using k-pose lets for detecting people and localizing their key points", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 3582 - 3589. 2014. [DOI:10.1109/CVPR.2014.458]
24. [24] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y. A. "OpenPose: real time multi-person 2D pose estimation using Part Annity Fields", IEEE Transactions on Pattern Analysis and Machine Intelligence. Vol. 43, pp.172 - 186. 2019. [DOI:10.1109/TPAMI.2019.2929257] [PMID]
25. [25] Thurau, C., Hlav_ac, V. "Pose primitive based human action recognition in videos or still images", in: 2008 IEEE Conference on Computer Vision and Pattern Recognition, IEEE. pp. 1 - 8. 2008. [DOI:10.1109/CVPR.2008.4587721]
26. [26] Reiss, A., Hendeby, G., Bleser, G., Stricker, D. "Activity recognition using biomechanical model based pose estimation", European Conference on Smart Sensing and Context, Springer. pp. 42 - 55. 2010. [DOI:10.1007/978-3-642-16982-3_4]
27. [27] Eiert, S. "Activity Recognition from 2D pose using an LSTM RNN", 2020.
28. [28] Luvizon, D. C., Picard, D., Tabia, H. "2D/3D pose estimation and action recognition using multitask deep learning", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 5137 - 5146. 2018. [DOI:10.1109/CVPR.2018.00539]
29. [29] Velasco-Mata, A. "Human pose information as an improvement factor for handgun detection", Master's thesis, Escuela Superior de Inform_atica (UCLM), 2020.
30. [30] Puad, A., Tahir2, M. D. "Human Gait Silhouettes Extraction Using Haar Cascade Classifier on OpenCV", International Conference on Modelling & Simulation. Vol. 25, pp. 105 - 111. 2017.
31. [31] Grega, M., Matiola'nski, A., Guzik, P., Leszczuk, M. "Automated detection of firearms and knives in a CCTV image", Sensors. Vol. 16. 2017. [DOI:10.3390/s16010047] [PMID] []
32. [32] http://www.imfdb.org/ wiki/Main_Page.
33. [33] Schmidt, A., Kasiński, A. "The performance of the haar cascade classifiers applied to the face and eyes detection," in Computer Recognition Systems 2, vol. 45, pp. 816-823, 2007. [DOI:10.1007/978-3-540-75175-5_101]
34. [34] Lienhart, R., Kuranov, A., Pisarevsky, V., Report, M. R. L. T. "Empirical Analysis of Detection Cascades of Boosted Classifiers for Rapid Object Detection." in Joint Pattern Recognition Symposium, pp. 297-304. 2003. [DOI:10.1007/978-3-540-45243-0_39]
35. [35] Paulo Menezes, J., Carlos Barreto, J. "Face Tracking Based On Haar-Like Features And Eigenfaces," in IFAC/EURON Symposium on Intelligent Autonomous Vehicles , pp. 1-6, 2004.
36. [36] Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollar, P., Zitnick, C. L. "Microsoft COCO: Common Objects in Context", European conference on computer vision, Springer. pp. 740 - 755. 2014. [DOI:10.1007/978-3-319-10602-1_48]
37. [37] Almaadeed, N., Elharrouss, O., Q'AlMaadeed,S., Bouridane, A., Beghdadi, A. "A Novel Approach for Robust Multi Human Action Recognition and Summarization based on 3D Convolutional Neural Networks", Computer Vision and Pattern Recognition, pp. 1-12. 2021.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Signal and Data Processing