دوره 20، شماره 4 - ( 12-1402 )                   جلد 20 شماره 4 صفحات 88-67 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Vahedipoor M, Shamsi M, Rasouli Kenari A. Improving Persian Opinion Mining based on Polarity and Balancing Positive and Negative Keywords (case study: Digikala reviews for mobile). JSDP 2024; 20 (4) : 5
URL: http://jsdp.rcisp.ac.ir/article-1-1202-fa.html
واحدی پور مهدیه، شمسی محبوبه، رسولی کناری عبدالرضا. بهبود نظرکاوی فارسی مبتنی بر قطبیت و متوازن‌سازی کلمات مهم مثبت و منفی (مطالعه موردی: نظرات دیجی‌کالا برای موبایل). پردازش علائم و داده‌ها. 1402; 20 (4) :67-88

URL: http://jsdp.rcisp.ac.ir/article-1-1202-fa.html


دانشگاه صنعتی قم
چکیده:   (468 مشاهده)
بسیاری از شبکه‌های اجتماعی و سایت‌ها به مردم اجازه می­دهند تا احساسات و نظرات خود را در مورد محصولات و خدمات مختلف به اشتراک بگذارند. در این مقاله روشی جدید مبتنی بر قطبیت نظرات مثبت و منفی فارسی درباره محصولات تلفن همراه از سایت دیجی‌کالا و داده­های سنتی­پرس ارائه شده است. نتیجه اجرا با الگوریتم­های بیز ساده، ماشین بردار پشتیبان، کاهش گرادیان تصادفی، رگرسیون لجستیک، جنگل تصادفی و یادگیری عمیق مانند شبکه عصبی کانولوشن و حافظه کوتاه‌مدت متوالی بر اساس پارامترهایی مانند صحت، بازیابی، معیار فیشر و دقت، موردتوجه قرار گرفته شده است. روش پیشنهادی روی داده­های دیجی‌کالا، با الگوریتم­های بیز ساده بین 10 تا 34 درصد و ماشین بردار پشتیبان بین 5 تا 24 درصد و کاهش گرادیان تصادفی بین 7 تا 38 درصد و رگرسیون لجستیک بین 5 تا 38 درصد و جنگل تصادفی بین 4 تا 22 درصد و روش شبکه عصبی کانولوشن به میزان 4 درصد افزایش دقت را به همراه داشته است. هم­چنین در داده­های سنتی­پرس با الگوریتم­های بیز ساده بین 12 تا 46 درصد و ماشین بردار پشتیبان بین 5 تا 46 درصد و کاهش گرادیان تصادفی بین 5 تا 35 درصد و رگرسیون لجستیک بین 6 تا 46 درصد و جنگل تصادفی بین 4 تا 46 درصد دقت نسبت به قبل از اعمال روش پیشنهادی به‌دست آمده است.
شماره‌ی مقاله: 5
متن کامل [PDF 1732 kb]   (129 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: مقالات پردازش متن
دریافت: 1399/10/11 | پذیرش: 1402/9/20 | انتشار: 1403/2/6 | انتشار الکترونیک: 1403/2/6

فهرست منابع
1. [1] Feldman, Ronen. "Techniques and applications for sentiment analysis." Communications of the ACM 56.4 (2013): 82-89.‏ [DOI:10.1145/2436256.2436274]
2. [2] Gautam, Geetika, and Divakar Yadav. "Sentiment analysis of twitter data using machine learning approaches and semantic analysis." 2014 Seventh International Conference on Contemporary Computing (IC3). IEEE, 2014.‏ [DOI:10.1109/IC3.2014.6897213]
3. [3] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." Communications of the ACM 60.6 (2017): 84-90.‏ [DOI:10.1145/3065386]
4. [4] Domingues, InĹes, et al. "Evaluation of oversampling data balancing techniques in the context of ordinal classification." 2018 International Joint Conference on Neural Networks (IJCNN). IEEE, 2018.‏ [DOI:10.1109/IJCNN.2018.8489599]
5. [5] Aung, Khin Zezawar, and Nyein Nyein Myo. "Sentiment analysis of students' comment using lexicon-based approach." 2017 IEEE/ACIS 16th international conference on computer and information science (ICIS). IEEE, 2017.‏ [DOI:10.1109/ICIS.2017.7959985]
6. [6] Hastie, Trevor, Robert Tibshirani, and Jerome Friedman. "Unsupervised learning." The elements of statistical learning. Springer, New York, NY, 2009. 485-585.‏ [DOI:10.1007/978-0-387-84858-7_14]
7. [7] Pang, Bo, Lillian Lee, and Shivakumar Vaithyanathan. "Thumbs up? Sentiment classification using machine learning techniques." arXiv preprint cs/0205070 (2002).‏ [DOI:10.3115/1118693.1118704]
8. [8] Salvetti, Franco, Stephen Lewis, and Christoph Reichenbach. "Automatic opinion polarity classification of movie reviews." Colorado research in linguistics 17 (2004).‏
9. [9] Beineke, Philip, Trevor Hastie, and Shivakumar Vaithyanathan. "The sentimental factor: Improving review classification via human-provided information." Proceedings of the 42nd Annual Meeting of the Association for Computational Linguistics (ACL-04). 2004.‏ [DOI:10.3115/1218955.1218989]
10. [10] Mullen, Tony, and Nigel Collier. "Sentiment analysis using support vector machines with diverse information sources." Proceedings of the 2004 conference on empirical methods in natural language processing. 2004.‏
11. [11] Dave, Kushal, Steve Lawrence, and David M. Pennock. "Mining the peanut gallery: Opinion extraction and semantic classification of product reviews." Proceedings of the 12th international conference on World Wide Web. 2003.‏ [DOI:10.1145/775152.775226]
12. [12] Matsumoto, Shotaro, Hiroya Takamura, and Manabu Okumura. "Sentiment classification using word sub-sequences and dependency sub-trees." Pacific-Asia conference on knowledge discovery and data mining. Springer, Berlin, Heidelberg, 2005.‏ [DOI:10.1007/11430919_37]
13. [13] Zhang, Dongwen, et al. "Chinese comments sentiment classification based on word2vec and SVMperf." Expert Systems with Applications 42.4 (2015): 1857-1863.‏ [DOI:10.1016/j.eswa.2014.09.011]
14. [14] Liu, Shuhua Monica, and Jiun-Hung Chen. "A multi-label Classification based approach for sentiment classification." Expert Systems with Applications 42.3 (2015): 1083-1093.‏ [DOI:10.1016/j.eswa.2014.08.036]
15. [15] Luo, Banghui, Jianping Zeng, and Jiangjiao Duan. "Emotion space model for classifying opinions in stock message board." Expert Systems with Applications 44 (2016): 138-146.‏ [DOI:10.1016/j.eswa.2015.08.023]
16. [16] Niu, Teng, et al. "Sentiment analysis on multi-view social data." International Conference on Multimedia Modeling. Springer, Cham, 2016.‏ [DOI:10.1007/978-3-319-27674-8_2]
17. [17] Li, Caiqiang, and Junming Ma. "Research on online education teacher evaluation model based on opinion mining." 2012 National Conference on Information Technology and Computer Science. Atlantis Press, 2012.‏ [DOI:10.2991/citcs.2012.264]
18. [18] Ortigosa, Alvaro, José M. Martín, and Rosa M. Carro. "Sentiment analysis in Facebook and its application to e-learning." Computers in human behavior 31 (2014): 527-541.‏ [DOI:10.1016/j.chb.2013.05.024]
19. [19] Pong-Inwong, Chakrit, and Wararat Songpan Rungworawut. "Teaching senti-lexicon for automated sentiment polarity definition in teaching evaluation." 2014 10th International Conference on Semantics, Knowledge and Grids. IEEE, 2014.‏ [DOI:10.1109/SKG.2014.25]
20. [20] Wang, Yili, and Hee Yong Youn. "Feature Weighting Based on Inter-Category and Intra-Category Strength for Twitter Sentiment Analysis." Applied Sciences 9.1 (2019): 92.‏ [DOI:10.3390/app9010092]
21. [21] Mnsefi, Gharizadeh, Sefidsangi, "An overview of opinion mining", The first specialized conference on intelligent computer systems and their applications, Tehran, 2011.
22. [22] Noeei, Jalali, Ghaemi, "Opinion mining: An overview of the work done", National Conference on Application of Intelligent Systems (soft computing) in Science and Technology, Quchan, 2013.
23. [23] Baccianella, Stefano, Andrea Esuli, and Fabrizio Sebastiani. "Sentiwordnet 3.0: an enhanced lexical resource for sentiment analysis and opinion mining." Lrec. Vol. 10. No. 2010. 2010.‏
24. [24] Ngoc, Phan Trong, and Myungsik Yoo. "The lexicon-based sentiment analysis for fan page ranking in Facebook." The International Conference on Information Networking 2014 (ICOIN2014). IEEE, 2014.‏ [DOI:10.1109/ICOIN.2014.6799721]
25. [25] Tang, Huifeng, Songbo Tan, and Xueqi Cheng. "A survey on sentiment detection of reviews." Expert Systems with Applications 36.7 (2009): 10760-10773.‏ [DOI:10.1016/j.eswa.2009.02.063]
26. [26] Garreta, Raul, and Guillermo Moncecchi. Learning scikit-learn: machine learning in python. Packt Publishing Ltd, 2013.‏
27. [27] McCallum, Andrew, and Kamal Nigam. "A comparison of event models for naive bayes text classification." AAAI-98 workshop on learning for text categorization. Vol. 752. No. 1. 1998.‏
28. [28] Hsu, Chih-Wei, Chih-Chung Chang, and Chih-Jen Lin. "A practical guide to support vector classification." (2003): 1396-1400.‏
29. [29] Bottou, Léon. "Stochastic gradient descent tricks." Neural networks: Tricks of the trade. Springer, Berlin, Heidelberg, 2012. 421-436.‏ [DOI:10.1007/978-3-642-35289-8_25]
30. [30] Walker, Strother H., and David B. Duncan. "Estimation of the probability of an event as a function of several independent variables." Biometrika 54.1-2 (1967): 167-179.‏ [DOI:10.1093/biomet/54.1-2.167] [PMID]
31. [31] Breiman, Leo. "Random forests." Machine learning 45.1 (2001): 5-32.‏ [DOI:10.1023/A:1010933404324]
32. [32] Yuan, Yufei, and Michael J. Shaw. "Induction of fuzzy decision trees." Fuzzy Sets and systems 69.2 (1995): 125-139.‏ [DOI:10.1016/0165-0114(94)00229-Z]
33. [33] LeCun, Yann, et al. "Gradient-based learning applied to document recognition." Proceedings of the IEEE 86.11 (1998): 2278-2324.‏ [DOI:10.1109/5.726791]
34. [34] Hochreiter, Sepp. "JA1 4 rgen Schmidhuber (1997). "Long Short-Term Memory"." Neural Computation 9.8.‏ [DOI:10.1162/neco.1997.9.8.1735] [PMID]
35. [35] Tripathy, Abinash, Ankit Agrawal, and Santanu Kumar Rath. "Classification of sentiment reviews using n-gram machine learning approach." Expert Systems with Applications 57 (2016): 117-126.‏ [DOI:10.1016/j.eswa.2016.03.028]
36. [36] Mouthami, K., K. Nirmala Devi, and V. Murali Bhaskaran. "Sentiment analysis and classification based on textual reviews." 2013 international conference on Information communication and embedded systems (ICICES). IEEE, 2013.‏ [DOI:10.1109/ICICES.2013.6508366]
37. [37] Zhang, H. "The Optimality of Naive Bayes," In Proc. Seventeenth Int. Florida Artif. Intell. Res. Soc. Conf. FLAIRS 2004, vol. 1, no. 2, pp. 1-6. 2004.
38. [38] Bishop, Christopher M. Pattern recognition and machine learning. springer, 2006.‏
39. [39] Bottou, Léon. "Large-scale machine learning with stochastic gradient descent." Proceedings of COMPSTAT'2010. Physica-Verlag HD, 2010. 177-186.‏ [DOI:10.1007/978-3-7908-2604-3_16]
40. [40] Menard, Scott. Applied logistic regression analysis. Vol. 106. Sage, 2002.‏ [DOI:10.4135/9781412983433]
41. [41] Breiman, Leo. "Random forests." Machine learning 45.1 (2001): 5-32.‏ [DOI:10.1023/A:1010933404324]
42. [42] Ketkar, Nikhil, and Eder Santana. Deep Learning with Python. Vol. 1. Berkeley, CA: Apress, 2017.‏ [DOI:10.1007/978-1-4842-2766-4_1]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این تارنما متعلق به فصل‌نامة علمی - پژوهشی پردازش علائم و داده‌ها است.