دوره 20، شماره 1 - ( 3-1402 )                   جلد 20 شماره 1 صفحات 180-171 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Tavoosi J, Yousefi S. A New Nonlinear Recurrent Type-2 Fuzzy Model to Identify the Behavior of Nonlinear Dynamic Systems. JSDP 2023; 20 (1) : 11
URL: http://jsdp.rcisp.ac.ir/article-1-1062-fa.html
طاوسی جعفر، یوسفی سجاد. یک مدل جدید فازی نوع-2 بازگشتی غیرخطی جهت شناسایی رفتار سیستم‌های دینامیکی غیرخطی. پردازش علائم و داده‌ها. 1402; 20 (1) :171-180

URL: http://jsdp.rcisp.ac.ir/article-1-1062-fa.html


دانشگاه ایلام
چکیده:   (1104 مشاهده)
در این مقاله یک شبکه عصبی فازی نوع-2 بازگشتی جدید جهت شناسایی سیستم­های دینامیکی غیرخطی ارائه می­گردد. ساختار شبکه عصبی فازی نوع-2 جدید با قسمت "آنگاه" غیرخطی، دارای 8 لایه می­باشد. در لایه­های 0، 1 و 2 عملیات فازی سازی انجام شده و حدود بالا و پایین درجه عضویت تعیین می­شود. در لایه­های 3 و 4 عملیات نرمال­سازی و وزن­دهی انجام می­گردد. در لایه توابع غیرخطی مثلثاتی وجود دارند که در واقع قسمت "آنگاه" سیستم فازی را تشکیل داده و فیدبک بازگشتی از لایه خروجی به این لایه وارد می­شود. در انتها در لایه­های 6 و 7 عملیات فازی­زدایی و محاسبه خروجی انجام می­گیرد. جهت بررسی و ارزیابی عملکرد شبکه در شناسایی سیستم، اطلاعات ورودی-خروجی دو سیستم فیزیکی (یک موتور DC و یک بازوی ربات منعطف) به شبکه عصبی فازی نوع-2 بازگشتی اعمال شده است. این پژوهش کاملا آزمایشگاهی و عملی بوده و به عبارتی بهره­برداری از تکنیک­های هوش مصنوعی در کار عملیاتی است. از نوآوری­های این مقاله علاوه بر ارائه شبکه عصبی جدید، تولید سیگنال مناسب جهت تحریک سیستم، استخراج داده از سیستم­های عملی، پیش پردازش داده (حذف داده پرت، تخمین داده ناموجود و نرمال­سازی داده­ها) می­باشد. در شبیه­سازی، معیار مجذور میانگین مربعات خطا نشان می­دهد که روش پیشنهادی با اختلاف فراوانی از سایر روش­ها، عملکرد مناسب­تر دارد.

 
شماره‌ی مقاله: 11
متن کامل [PDF 1104 kb]   (344 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: مقالات پردازش داده‌های رقمی
دریافت: 1398/5/30 | پذیرش: 1401/12/3 | انتشار: 1402/5/22 | انتشار الکترونیک: 1402/5/22

فهرست منابع
1. [1] A. Rabbani, A. Karimpor, Identification and Modeling of Gas Turbine and Response Investigation of the Model to the Frequency Variation of Grid Power. Journal of Control. Vol. 12, no. 3, pp.77-87, 2018. Doi: 10.29252/joc.12.3.77. [DOI:10.29252/joc.12.3.77]
2. [2] W. Greblicki and M. Pawlak, "The Weighted Nearest Neighbor Estimate for Hammerstein System Identification," in IEEE Transactions on Automatic Control, vol. 64, no. 4, pp. 1550-1565, April 2019, doi: 10.1109/TAC.2018.2866463. [DOI:10.1109/TAC.2018.2866463]
3. [3] M. Lin, C. Cheng, Z. Peng, X. Dong, Y. Qu, and G. Meng, Nonlinear dynamical system identification using the sparse regression and separable least squares methods, Journal of Sound and Vibration, vol. 505, pp. 116141, 2021. https://doi.org/10.1016/j.jsv.2021.116141 [DOI:10.1016/j.jsv.2021.116141.]
4. [4] E. Ghorbani, O. Buyukozturk, and Y. J. Cha, Hybrid output-only structural system identification using random decrement and Kalman filter, Mechanical Systems and Signal Processing, vol. 144, pp. 106977, 2020. https://doi.org/10.1016/j.ymssp.2020.106977 [DOI:10.1016/j.ymssp.2020.106977.]
5. [5] E. Yazid, C. Y. Ng, Identification of time-varying linear and nonlinear impulse response functions using parametric Volterra model from model test data with application to a moored floating structure, Ocean Engineering, vol. 219, pp. 108370, 2021. https://doi.org/10.1016/j.oceaneng.2020.108370 [DOI:10.1016/j.oceaneng.2020.108370.]
6. [6] M. Jalanko, Y. Sanchez, V. Mahalec, P. Mhaskar, Adaptive system identification of industrial ethylene splitter: A comparison of subspace identification and artificial neural networks, Computers & Chemical Engineering, Vol. 147, 2021. https://doi.org/10.1016/j.compchemeng.2021.107240 [DOI:10.1016/j.compchemeng.2021.107240.]
7. [7] H. L. Lyu, W. Wang, X. P. Liu, System identification of fuzzy relation matrix models by semi-tensor product operations, Fuzzy Sets and Systems, vol. 440, pp. 77-89, 2021. https://doi.org/10.1016/j.fss.2021.06.004 [DOI:10.1016/j.fss.2021.06.004.]
8. [8] L. Xu, B. Song & M. Cao "An improved particle swarm optimization algorithm with adaptive weighted delay velocity", Systems Science & Control Engineering, vol. 9, no. 1, pp. 188-197, 2021. https://doi.org/10.1080/21642583.2021.1891153 [DOI:10.1080/21642583.2021.1891153.]
9. [9] J. Tavoosi, A. Suratgar, and M. Menhaj, "Stable ANFIS2 for Nonlinear System Identification". Neurocomputing, vol. 182, pp. 235-246, 2016. https://doi.org/10.1016/j.neucom.2015.12.030 [DOI:10.1016/j.neucom.2015.12.030.]
10. [10] J. Tavoosi, A. Suratgar, and M. Menhaj, "Nonlinear system identification based on a self-organizing type-2 fuzzy RBFN". Engineering Applications of Artificial Intelligence, vol. 54, pp. 26-38, 2016. https://doi.org/10.1016/j.engappai.2016.04.006 [DOI:10.1016/j.engappai.2016.04.006.]
11. [11] J. Tavoosi, A. Mohammadzadeh, K. Jermsittiparsert, A review on type-2 fuzzy neural networks for system identification, Soft Computing, vol. 25, no. 10, pp. 7197-7212, 2021. https://doi.org/10.1007/s00500-021-05686-5 [DOI:10.1007/s00500-021-05686-5.] [PMID] []
12. [12] H. Wang, C. Luo, and X. Wang, "Synchronization and identification of nonlinear systems by using a novel self-evolving interval type-2 fuzzy LSTM-neural network". Engineering Applications of Artificial Intelligence, vol. 81, pp.79-93, 2019. https://doi.org/10.1016/j.engappai.2019.02.002 [DOI:10.1016/j.engappai.2019.02.002.]
13. [13] A. M. El-Nagar, "Nonlinear dynamic systems identification using recurrent interval type-2 TSK fuzzy neural network - A novel structure". ISA Transactions, vol. 72, pp.205-217, 2018. https://doi.org/10.1016/j.isatra.2017.10.012 [DOI:10.1016/j.isatra.2017.10.012.] [PMID]
14. [14] C. M. Lin, T. L. Le and Huynh, "Self-evolving function-link interval type-2 fuzzy neural network for nonlinear system identification and control". Neurocomputing, vol. 275, pp.2239-2250, 2019. https://doi.org/10.1016/j.neucom.2017.11.009 [DOI:10.1016/j.neucom.2017.11.009.]
15. [15] Y. -Y. Lin, J. -Y. Chang, N. R. Pal and C. -T. Lin, "A Mutually Recurrent Interval Type-2 Neural Fuzzy System (MRIT2NFS) With Self-Evolving Structure and Parameters," in IEEE Transactions on Fuzzy Systems, vol. 21, no. 3, pp. 492-509, June 2013, doi: 10.1109/TFUZZ.2013.2255613. [DOI:10.1109/TFUZZ.2013.2255613]
16. [16] H. Moodi and D. Bustan, "Wind turbine control using T-S systems with nonlinear consequent parts". Energy, vol. 172, pp.922-931, 2019. https://doi.org/10.1016/j.energy.2019.01.133 [DOI:10.1016/j.energy.2019.01.133.]
17. [17] J. Dong, Y. Wang and G. -H. Yang, "Control Synthesis of Continuous-Time T-S Fuzzy Systems with Local Nonlinear Models," in IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 39, no. 5, pp. 1245-1258, Oct. 2009, doi: 10.1109/TSMCB.2009.2014961. [DOI:10.1109/TSMCB.2009.2014961] [PMID]
18. [18] H. Moodi, M. Farrokhi, "Robust observer-based controller design for Takagi-Sugeno systems with nonlinear consequent parts". Fuzzy Sets Systems. vol. 273, no. 15, p. 141-154, 2015. https://doi.org /10.1016/j.fss .2015.01.007. [DOI:10.1016/j.fss.2015.01.007]
19. [19] P. Agand, M. A. Shoorehdeli, A. Khaki-Sedigh. "Adaptive recurrent neural network with Lyapunov stability learning rules for robot dynamic terms identification". Engineering Applications of Artificial Intelligence, vol. 65, p. 1-11, 2017. https://doi.org/10.1016/j.engappai.2017.07.009 [DOI:10.1016/j.engappai.2017.07.009.]
20. [20] Y. -Y. Lin, S. -H. Liao, J. -Y. Chang and C. -T. Lin, "Simplified Interval Type-2 Fuzzy Neural Networks," in IEEE Transactions on Neural Networks and Learning Systems, vol. 25, no. 5, pp. 959-969, May 2014, doi: 10.1109/TNNLS.2013.2284603. [DOI:10.1109/TNNLS.2013.2284603] [PMID]
21. [21] J. Tavoosi, A. A. Suratgar, M. B. Menhaj, A. Mosavi, A. Mohammadzadeh, and E. Ranjbar, "Modeling Renewable Energy Systems by a Self-Evolving Nonlinear Consequent Part Recurrent Type-2 Fuzzy System for Power Prediction," Sustainability, vol. 13, no. 6, pp. 3301, Mar. 2021, doi: 10.3390/su13063301. [Online]. Available: http://dx.doi.org/10.3390/su13063301. [DOI:10.3390/su13063301]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این تارنما متعلق به فصل‌نامة علمی - پژوهشی پردازش علائم و داده‌ها است.