Volume 20, Issue 1 (6-2023)                   JSDP 2023, 20(1): 171-180 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Tavoosi J, Yousefi S. A New Nonlinear Recurrent Type-2 Fuzzy Model to Identify the Behavior of Nonlinear Dynamic Systems. JSDP 2023; 20 (1) : 11
URL: http://jsdp.rcisp.ac.ir/article-1-1062-en.html
Ilam University
Abstract:   (788 Views)
In this paper, a new recurrent type-2 fuzzy neural network for nonlinear dynamic systems identification is presented. The structure of the new type-2 fuzzy neural network with the non-linear "then" part has 8 layers. In layers 0, 1 and 2, the fuzzification operation is performed and the upper and lower limits of the membership degree are determined. Normalization and weighting operations are performed in layers 3 and 4. In layer 5, there are non-linear trigonometric functions, which actually form the "then" part of the fuzzy system, and return feedback from the output layer enters this layer. Finally, in the 6th and 7th layers, the de-fuzzification operation and the output calculation are performed. In order to check and evaluate the performance of the network in system identification, the input-output information of two physical systems (a DC motor and a flexible robot arm) has been applied to the type-2 recurrent fuzzy neural network. This research is completely experimental and practical, in other words, it is the use of artificial intelligence techniques in operational work. Among the innovations of this article, in addition to presenting a new neural network, is generating a suitable signal to stimulate the system, extracting data from practical systems, data pre-processing (removing outliers, estimating missing data, and normalizing data). In the simulation, the root mean square error criterion shows that the proposed method has a better performance than other methods.

 
Article number: 11
Full-Text [PDF 1104 kb]   (249 Downloads)    
Type of Study: Research | Subject: Paper
Received: 2019/08/21 | Accepted: 2023/02/22 | Published: 2023/08/13 | ePublished: 2023/08/13

References
1. [1] A. Rabbani, A. Karimpor, Identification and Modeling of Gas Turbine and Response Investigation of the Model to the Frequency Variation of Grid Power. Journal of Control. Vol. 12, no. 3, pp.77-87, 2018. Doi: 10.29252/joc.12.3.77. [DOI:10.29252/joc.12.3.77]
2. [2] W. Greblicki and M. Pawlak, "The Weighted Nearest Neighbor Estimate for Hammerstein System Identification," in IEEE Transactions on Automatic Control, vol. 64, no. 4, pp. 1550-1565, April 2019, doi: 10.1109/TAC.2018.2866463. [DOI:10.1109/TAC.2018.2866463]
3. [3] M. Lin, C. Cheng, Z. Peng, X. Dong, Y. Qu, and G. Meng, Nonlinear dynamical system identification using the sparse regression and separable least squares methods, Journal of Sound and Vibration, vol. 505, pp. 116141, 2021. https://doi.org/10.1016/j.jsv.2021.116141 [DOI:10.1016/j.jsv.2021.116141.]
4. [4] E. Ghorbani, O. Buyukozturk, and Y. J. Cha, Hybrid output-only structural system identification using random decrement and Kalman filter, Mechanical Systems and Signal Processing, vol. 144, pp. 106977, 2020. https://doi.org/10.1016/j.ymssp.2020.106977 [DOI:10.1016/j.ymssp.2020.106977.]
5. [5] E. Yazid, C. Y. Ng, Identification of time-varying linear and nonlinear impulse response functions using parametric Volterra model from model test data with application to a moored floating structure, Ocean Engineering, vol. 219, pp. 108370, 2021. https://doi.org/10.1016/j.oceaneng.2020.108370 [DOI:10.1016/j.oceaneng.2020.108370.]
6. [6] M. Jalanko, Y. Sanchez, V. Mahalec, P. Mhaskar, Adaptive system identification of industrial ethylene splitter: A comparison of subspace identification and artificial neural networks, Computers & Chemical Engineering, Vol. 147, 2021. https://doi.org/10.1016/j.compchemeng.2021.107240 [DOI:10.1016/j.compchemeng.2021.107240.]
7. [7] H. L. Lyu, W. Wang, X. P. Liu, System identification of fuzzy relation matrix models by semi-tensor product operations, Fuzzy Sets and Systems, vol. 440, pp. 77-89, 2021. https://doi.org/10.1016/j.fss.2021.06.004 [DOI:10.1016/j.fss.2021.06.004.]
8. [8] L. Xu, B. Song & M. Cao "An improved particle swarm optimization algorithm with adaptive weighted delay velocity", Systems Science & Control Engineering, vol. 9, no. 1, pp. 188-197, 2021. https://doi.org/10.1080/21642583.2021.1891153 [DOI:10.1080/21642583.2021.1891153.]
9. [9] J. Tavoosi, A. Suratgar, and M. Menhaj, "Stable ANFIS2 for Nonlinear System Identification". Neurocomputing, vol. 182, pp. 235-246, 2016. https://doi.org/10.1016/j.neucom.2015.12.030 [DOI:10.1016/j.neucom.2015.12.030.]
10. [10] J. Tavoosi, A. Suratgar, and M. Menhaj, "Nonlinear system identification based on a self-organizing type-2 fuzzy RBFN". Engineering Applications of Artificial Intelligence, vol. 54, pp. 26-38, 2016. https://doi.org/10.1016/j.engappai.2016.04.006 [DOI:10.1016/j.engappai.2016.04.006.]
11. [11] J. Tavoosi, A. Mohammadzadeh, K. Jermsittiparsert, A review on type-2 fuzzy neural networks for system identification, Soft Computing, vol. 25, no. 10, pp. 7197-7212, 2021. https://doi.org/10.1007/s00500-021-05686-5 [DOI:10.1007/s00500-021-05686-5.] [PMID] []
12. [12] H. Wang, C. Luo, and X. Wang, "Synchronization and identification of nonlinear systems by using a novel self-evolving interval type-2 fuzzy LSTM-neural network". Engineering Applications of Artificial Intelligence, vol. 81, pp.79-93, 2019. https://doi.org/10.1016/j.engappai.2019.02.002 [DOI:10.1016/j.engappai.2019.02.002.]
13. [13] A. M. El-Nagar, "Nonlinear dynamic systems identification using recurrent interval type-2 TSK fuzzy neural network - A novel structure". ISA Transactions, vol. 72, pp.205-217, 2018. https://doi.org/10.1016/j.isatra.2017.10.012 [DOI:10.1016/j.isatra.2017.10.012.] [PMID]
14. [14] C. M. Lin, T. L. Le and Huynh, "Self-evolving function-link interval type-2 fuzzy neural network for nonlinear system identification and control". Neurocomputing, vol. 275, pp.2239-2250, 2019. https://doi.org/10.1016/j.neucom.2017.11.009 [DOI:10.1016/j.neucom.2017.11.009.]
15. [15] Y. -Y. Lin, J. -Y. Chang, N. R. Pal and C. -T. Lin, "A Mutually Recurrent Interval Type-2 Neural Fuzzy System (MRIT2NFS) With Self-Evolving Structure and Parameters," in IEEE Transactions on Fuzzy Systems, vol. 21, no. 3, pp. 492-509, June 2013, doi: 10.1109/TFUZZ.2013.2255613. [DOI:10.1109/TFUZZ.2013.2255613]
16. [16] H. Moodi and D. Bustan, "Wind turbine control using T-S systems with nonlinear consequent parts". Energy, vol. 172, pp.922-931, 2019. https://doi.org/10.1016/j.energy.2019.01.133 [DOI:10.1016/j.energy.2019.01.133.]
17. [17] J. Dong, Y. Wang and G. -H. Yang, "Control Synthesis of Continuous-Time T-S Fuzzy Systems with Local Nonlinear Models," in IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 39, no. 5, pp. 1245-1258, Oct. 2009, doi: 10.1109/TSMCB.2009.2014961. [DOI:10.1109/TSMCB.2009.2014961] [PMID]
18. [18] H. Moodi, M. Farrokhi, "Robust observer-based controller design for Takagi-Sugeno systems with nonlinear consequent parts". Fuzzy Sets Systems. vol. 273, no. 15, p. 141-154, 2015. https://doi.org /10.1016/j.fss .2015.01.007. [DOI:10.1016/j.fss.2015.01.007]
19. [19] P. Agand, M. A. Shoorehdeli, A. Khaki-Sedigh. "Adaptive recurrent neural network with Lyapunov stability learning rules for robot dynamic terms identification". Engineering Applications of Artificial Intelligence, vol. 65, p. 1-11, 2017. https://doi.org/10.1016/j.engappai.2017.07.009 [DOI:10.1016/j.engappai.2017.07.009.]
20. [20] Y. -Y. Lin, S. -H. Liao, J. -Y. Chang and C. -T. Lin, "Simplified Interval Type-2 Fuzzy Neural Networks," in IEEE Transactions on Neural Networks and Learning Systems, vol. 25, no. 5, pp. 959-969, May 2014, doi: 10.1109/TNNLS.2013.2284603. [DOI:10.1109/TNNLS.2013.2284603] [PMID]
21. [21] J. Tavoosi, A. A. Suratgar, M. B. Menhaj, A. Mosavi, A. Mohammadzadeh, and E. Ranjbar, "Modeling Renewable Energy Systems by a Self-Evolving Nonlinear Consequent Part Recurrent Type-2 Fuzzy System for Power Prediction," Sustainability, vol. 13, no. 6, pp. 3301, Mar. 2021, doi: 10.3390/su13063301. [Online]. Available: http://dx.doi.org/10.3390/su13063301. [DOI:10.3390/su13063301]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Signal and Data Processing