1. [1] M. Hopkins and A. Dehghantanha, "Exploit Kits: The production line of the Cybercrime economy?," in 2015 2nd International Conference on Information Security and Cyber Forensics, InfoSec 2015, 2016, pp. 23-27. [
DOI:10.1109/InfoSec.2015.7435501] [
PMID]
2. [2] Hosseini F, Mirzarezaee M, Sharifi A, "Malware Detection using Classification of Variable-Length Sequences," JSDP, vol. 16 (2), pp.137-146, 2019 [
DOI:10.29252/jsdp.16.2.137]
3. [2] حسینی فاطمه، میرزارضایی میترا، شریفی آرش. آشکارسازی بدافزارها با استفاده از دستهبندی دنبالههای با طول متغیر. پردازش علائم و دادهها. 1398;(2)16;137-146
4. [3] Symantec, "Internet Security Threat Report (ISTR)," no. April. p. 10, 2017.
5. [4] D. Palmer, "How Bitcoin helped fuel an explosion in ransomware attacks," 2016. [Online]. Available: http://www.zdnet.com/article/how-bitcoin-helped-fuel-an-explosion-in-ransomware-attacks/.
6. [5] A. Azmoodeh, A. Dehghantanha, M. Conti, and K.-K. R. Choo, "Detecting crypto-ransomware in IoT networks based on energy consumption footprint," J. Ambient Intell. Humaniz. Comput., Aug. 2017. [
DOI:10.1007/s12652-017-0558-5]
7. [6] R. Richardson and M. M. North, "Ransomware : Evolution , Mitigation and Prevention," Int. Manag. Rev., vol. 13, no. 1, pp. 10-21, Jan. 2017.
8. [7] K. Savage, P. Coogan, and H. Lau, "The Evolution of Ransomware," Res. Manag., vol. 54, no. 5, pp. 59-63, 2015. [
DOI:10.1007/s12176-015-0581-3]
9. [8] Monika, P. Zavarsky, and D. Lindskog, "Experimental Analysis of Ransomware on Windows and Android Platforms: Evolution and Characterization," in Procedia Computer Science, 2016, vol. 94, pp. 465-472. [
DOI:10.1016/j.procs.2016.08.072]
10. [9] E. Kirda, "UNVEIL: A large-scale, automated approach to detecting ransomware (keynote)," in usenix.org, 2017, pp. 1-1. [
DOI:10.1109/SANER.2017.7884603]
11. [10] N. Scaife, H. Carter, P. Traynor, and K. R. B. Butler, "CryptoLock (and Drop It): Stopping Ransomware Attacks on User Data," in Proceedings - International Conference on Distributed Computing Systems, 2016, vol. Aug2016, pp. 303-312. [
DOI:10.1109/ICDCS.2016.46]
12. [11] A. Continella et al., "ShieldFS," in Proceedings of the 32nd Annual Conference on Computer Security Applications - ACSAC 16, 2016, pp. 336-347. [
DOI:10.1145/2991079.2991110]
13. [12] A. Palisse, A. Durand, H. Le Bouder, C. Le Guernic, and J. L. Lanet, "Data aware defense (DaD): Towards a generic and practical ransomware countermeasure," in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2017, vol. 10674 LNCS, pp. 192-208. [
DOI:10.1007/978-3-319-70290-2_12]
14. [13] D. Sgandurra, L. Muñoz-González, R. Mohsen, and E. C. Lupu, "Automated Dynamic Analysis of Ransomware: Benefits, Limitations and use for Detection," undefined, 2016.
15. [14] A. Kharraz and E. Kirda, "Redemption: Real-Time Protection Against Ransomware at End-Hosts," in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2017, vol. 10453 LNCS, pp. 98-119. [
DOI:10.1007/978-3-319-66332-6_5]
16. [15] Z. He, X. Xu, J. Z. Huang, and S. Deng, "A Frequent Pattern Discovery Method for Outlier Detection," Springer, Berlin, Heidelberg, 2010, pp. 726-732. [
DOI:10.1007/978-3-540-27772-9_80]
17. [16] R. Agrawal and R. Srikant, "Mining Sequential Patterns," in Proceedings of the Eleventh International Conference on Data Engineering, 1995, pp. 3-14.
18. [17] C. H. Mooney and J. F. Roddick, "Sequential pattern mining -- approaches and algorithms," ACM Comput. Surv., vol. 45, no. 2, pp. 1-39, Feb. 2013. [
DOI:10.1145/2431211.2431218]
19. [18] Andrej Karpathy, "The Unreasonable Effectiveness of Recurrent Neural Networks," 2015. [Online]. Available: http://karpath-y.github.io/2015/05/21/rnn-effectiveness/. [Accessed: 30-May-2019].
20. [19] "What is Apache MapReduce? | IBM." [Online]. Available: https://www.ibm.com/-analytics/hadoop/mapreduce. [Accessed: 30-May-2019].
21. [20] J. A. K. Suykens, "Introduction to Machine Learning," 2014, pp. 765-773. [
DOI:10.1016/B978-0-12-396502-8.00013-9]
22. [21] M. Sohrabi, M. M. Javidi, and S. Hashemi, "Detecting intrusion transactions in database systems: A novel approach," J. Intell. Inf. Syst., vol. 42, no. 3, pp. 619-644, Jun. 2014. [
DOI:10.1007/s10844-013-0286-z]
23. [22] S. Boughorbel, F. Jarray, and M. El-Anbari, "Optimal classifier for imbalanced data using Matthews Correlation Coefficient metric," PLoS One, vol. 12, no. 6, pp. e0177678, Jun. 2017. [
DOI:10.1371/journal.pone.0177678] [
PMID] [
PMCID]
24. [23] D. M. W. Powers, "Evaluation: From precision, recall and fmeasure to roc, informedness, markedness and correlation," J. Mach. Learn. Technol., vol. 2, no. 1, pp. 37-63, 2007.
25. [24] A. Hall, Mark, "Correlation-based feature selection for machine learning," 1999.