دوره 20، شماره 1 - ( 3-1402 )                   جلد 20 شماره 1 صفحات 24-3 | برگشت به فهرست نسخه ها


XML English Abstract Print


سیستان و بلوچستان
چکیده:   (752 مشاهده)
با رشد روزافزون خودروها و افزایش شبکه های حمل و نقل و به تبع آن نیاز به یک سیستم امن­تر و کارآمدتر، شبکه­های خودرویی مورد توجه واقع شده­اند. در همین راستا برای مدیریت بهینه و ساده­تر سیستم­های حمل و نقل، دسته­بندی خودروها به پلاتون پیشنهاد شده است. هرچند شبکه­های خودرویی و پروتکل ارتباطی استاندارد IEEE 802.11p ابزار کلیدی برای توسعه برنامه­های کاربردی پلاتون هستند، اما همکاری بین خودروها در این پروتکل براساس یک ساختار ارتباطی قابل اعتماد نیست؛ و ظهور ناگهانی یک حمله مخرب می­تواند باعث به خطر افتادن صحت جریان ترافیک داده­ها گردد. هرچند برای مقابله با مشکلات مطرح شده الگوریتم رای گیری پیشنهاد شده بود اما به دلیل نیاز خودروها به دریافت اطلاعات از حداقل دو خودرو جهت انجام رای گیری، در اغلب توپولوژی­ها از کارایی لازم برخوردار نبود؛ و سبب کاهش اثر حمله دست­کاری برای خودرو قربانی نگردیده بود. در این پژوهش جهت رفع مشکلات الگوریتم رای گیری، راه­کار مناسبی با استفاده از تغییرات فاصله هر خودرو نسبت به خودرو رهبر و همچنین بهترین سرعت خودروی مخرب نسبت به سرعت رهبر پیشنهاد شده است. شبیه­سازی راه­کار پیشنهادی نشان می­دهد که این پژوهش نسبت به حملات دست­کاری در زمان 43/0 ثانیه و نسبت به حملات جعل پیام در زمان 48/0 ثانیه واکنش نشان می­دهد. همچنین مشکلات الگوریتم رای­گیری را برطرف کرده است.
شماره‌ی مقاله: 1
واژه‌های کلیدی: پلاتون، شبکه های خودرویی، امنیت
متن کامل [PDF 2671 kb]   (948 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: مقالات گروه امنیت اطلاعات
دریافت: 1399/9/4 | پذیرش: 1400/9/29 | انتشار: 1402/4/31 | انتشار الکترونیک: 1402/4/31

فهرست منابع
1. [1] E. Coelingh and S. Solyom, "All aboard the robotic road train," Ieee Spectrum, vol. 49, no. 11, pp. 34-39, 2012. [DOI:10.1109/MSPEC.2012.6341202]
2. [2] A. K. Saha and D. B. Johnson, "Modeling Mobility for Vehicular Ad Hoc Networks," Proceedings of the 1st ACM International Workshop on Vehicular Ad hoc Networks , 2004, pp. 91-92. [DOI:10.1145/1023875.1023892]
3. [3] Ucar, Seyhan, Ergen, Sinem Coleri and Ozkasap, Oznur, "Security vulnerabilities of IEEE802.11 p and visible light communication based platoon," in 2016 IEEE Vehicular Networking Conference (VNC), 2016. [DOI:10.1109/VNC.2016.7835972]
4. [4] Ucar, Seyhan, Ergen, Sinem Coleri and Ozkasap, Oznur, "IEEE 802.11 p and visible light hybrid communication based secure autonomous platoon," IEEE Transactions on Vehicular Technology, vol. 67, no. 9, pp. 8667-8681, 2018. [DOI:10.1109/TVT.2018.2840846]
5. [5] M. S. Al-Kahtani, "Survey on security attacks in Vehicular Ad hoc Networks (VANETs)," in International Conference on Signal Processing and Communication Systems, 2012. [DOI:10.1109/ICSPCS.2012.6507953]
6. [6] A. Petrillo, A. Pescapé and S. Santini, "A collaborative approach for improving the security of vehicular scenarios: The case of platooning," Computer Communications, vol. 122, pp. 59-75, 2018. [DOI:10.1016/j.comcom.2018.03.014]
7. [7] DeBruhl, Bruce, Weerakkody, Sean, Sinopoli, Bruno and Tague, Patrick, "Is your commute driving you crazy? a study of misbehavior in vehicular platoons," in Proceedings of the 8th ACM Conference on Security & Privacy in Wireless and Mobile Networks, 2015. [DOI:10.1145/2766498.2766505]
8. [8] Kim, Yeongkwun and Kim, Injoo, "Security issues in vehicular networks," in The International Conference on Information Networking 2013 (ICOIN), 2013. [DOI:10.1109/ICOIN.2013.6496424]
9. [9] A.-S. K. Pathan, Security of self-organizing networks: MANET, WSN, WMN, VANET, CRC press, 2016. [DOI:10.1201/EBK1439819197]
10. [10] Garip, Mevlut Turker, Gursoy, Mehmet Emre, Reiher, Peter and Gerla, Mario, "Congestion attacks to autonomous cars using vehicular botnets," in NDSS Workshop on Security of Emerging Networking Technologies (SENT), San Diego, CA, 2015. [DOI:10.14722/sent.2015.23001] []
11. [11] Engoulou, Richard Gilles, Bellaïche, Martine, Pierre, Samuel and Quintero, Alejandro, "VANET security surveys," Computer Communications, vol. 44, pp. 1-13, 2014. [DOI:10.1016/j.comcom.2014.02.020]
12. [12] Alcaraz, Cristina, Lopez, Javier and Wolthusen, Stephen, "OCPP protocol: Security threats and challenges," IEEE Transactions on Smart Grid, vol. 8, no. 5, pp. 2452-2459, 2017. [DOI:10.1109/TSG.2017.2669647]
13. [13] Crepeau, Claude, Davis, Carlton R and Maheswaran, Muthucumaru, "A secure MANET routing protocol with resilience against byzantine behaviours of malicious or selfish nodes," in 21st International Conference on Advanced Information Networking and Applications Workshops (AINAW'07), 2007. [DOI:10.1109/AINAW.2007.54]
14. [14] Hasrouny, Hamssa, Samhat, Abed Ellatif, Bassil, Carole and Laouiti, Anis, "VANet security challenges and solutions: A survey," Vehicular Communications, vol. 7, pp. 7-20, 2017. [DOI:10.1016/j.vehcom.2017.01.002]
15. [15] Jahanshahi, Niloofar and Ferrari, Riccardo MG, "Attack detection and estimation in cooperative vehicles platoons: A sliding mode observer approach," IFAC-PapersOnLine, vol. 21, no. 23, pp. 212-217, 2018. [DOI:10.1016/j.ifacol.2018.12.037]
16. [16] Boeira, Felipe, Asplund, Mikael and Barcellos, Marinho P, "Mitigating position falsification attacks in vehicular platooning," in 2018 IEEE Vehicular Networking Conference (VNC), 2018. [DOI:10.1109/VNC.2018.8628427]
17. [17] Mousavinejad, Eman, Yang, Fuwen, Han, Qing-Long, Qiu, Quanwei and Vlacic, Ljubo, "Cyber attack detection in platoon-based vehicular networked control systems," in 2018 IEEE 27th International Symposium on Industrial Electronics (ISIE), 2018. [DOI:10.1109/ISIE.2018.8433814]
18. [18] Merco, Roberto, Biron, Zoleikha Abdollahi and Pisu, Pierluigi, "Replay attack detection in a platoon of connected vehicles with cooperative adaptive cruise control," in 2018 Annual American Control Conference (ACC), 2018. [DOI:10.23919/ACC.2018.8431538]
19. [19] Santini, Stefania, Salvi, Alessandro, Valente, Antonio Saverio, Pescapé, Antonio, Segata, Michele and Cigno, Renato Lo, "A consensus-based approach for platooning with intervehicular communications and its validation in realistic scenarios," IEEE Transactions on Vehicular Technology, vol. 66, no. 3, pp. 1985-1999, 2016. [DOI:10.1109/TVT.2016.2585018]
20. [20] Yang, Zheng, Shengbo, Eben Li, Jianqiang, Wang, Dongpu, Cao and Keqiang, Li, "Stability and Scalability of Homogeneous Vehicular Platoon: Study on the Influence of Information Flow Topologies," IEEE Transactions on Intelligent Transportation Systems , vol. 17, no. 1, pp. 14 - 26, 2016. [DOI:10.1109/TITS.2015.2402153]
21. [21] S. E. Li, Y. Zheng, K. Li and J. Wang, "An Overview of Vehicular Platoon Control under the Four-Component," in 2015 IEEE Intelligent Vehicles Symposium (IV), Seoul, South Korea, 2015.
22. [22] Yang, Zheng, Shengbo, Eben Li, Jianqiang, Wang, Le, Yi Wang and Keqiang, Li, "Influence of information flow topology on closed-loop stability of vehicle platoon with rigid formation," in International IEEE Conference on Intelligent Transportation Systems (ITSC), 2014. [DOI:10.1109/ITSC.2014.6958012]
23. [23] Yongcan, Cao, Wenwu, Yu, Wei, Ren and Guanrong, Chen, "An Overview of Recent Progress in the Study of Distributed Multi-Agent Coordination," IEEE Transactions on Industrial Informatics, vol. 9, no. 1, pp. 427 - 438, 2013. [DOI:10.1109/TII.2012.2219061]
24. [24] Jean-Pierre, Richard, "Time-delay systems:an overview of some recent advances and open problems," Automatica, 2003. [DOI:10.1016/S0005-1098(03)00167-5]
25. [25] D, Swaroop and J.K, Hedrick, "String stability of interconnected systems," IEEE Transactions on Automatic Control, vol. 41, no. 3, pp. 349 - 357, 1996. [DOI:10.1109/9.486636]
26. [26] A. Salvi, S. Santini and A. S. Valente, "Design, analysis and performance evaluation of a third order distributed protocol for platooning in the presence of timevarying delays and switching topologies," Transportation Research Part C: Emerging Technologies, pp. 360-383, 2017. [DOI:10.1016/j.trc.2017.04.013]
27. [27] A. Botta, A. Pescape and G. Ventre, "Quality of service statistics over heterogeneous networks: Analysis and applications," European Journal of Operational Research, vol. 191, no. 3, pp. 1075-1088, 2008. [DOI:10.1016/j.ejor.2007.07.022]
28. [28] R. P. Karrer, I. Matyasovszki, A. Botta and A. Pescape, "MagNets - experiences from deploying a joint research-operational next-generation wireless access network testbed," in 2007 3rd International Conference on Testbeds and Research Infrastructure for the Development of Networks and Communities, Lake Buena Vista, FL, USA, 2007. [DOI:10.1109/TRIDENTCOM.2007.4444714]
29. [29] G. Chen and F. L. Lewis, "Leader-following control for multiple inertial agents," International Journal of Robust and Nonlinear Control, vol. 21, no. 8, pp. 925-942, 2011. [DOI:10.1002/rnc.1642]
30. [30] M. Segata, S. Joerer, B. Bloessl, C. Sommer, F. Dressler and R. L. Cigno, "PLEXE: A Platooning Extension for Veins," 2014 IEEE Vehicular Networking Conference (VNC), 2014, pp. 53-60. [DOI:10.1109/VNC.2014.7013309]
31. [31] C. Sommer, "Veins," 2006. [Online]. Available: https://veins.car2x.org/. [Accessed 2020].
32. [32] A. Varga and R. Hornig, "An overview of the OMNeT++ simulation environment," in SIMUTools 2008 - 1st International ICST Conference on Simulation Tools and Techniques for Communications, Networks and Systems, Belgium, 2008. [DOI:10.4108/ICST.SIMUTOOLS2008.3027]

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.