1. [1] M. G. a. M. E. Newman, "Community structure in social and biological networks," Proceedings of the National Academy of Sciences, pp. 7821-7826, 2002. [
DOI:10.1073/pnas.122653799] [
PMID] [
PMCID]
2. [2] Bajec and L. Š. M, "Group detection in complex networks: An algorithm and comparison of the state of the art," Physica A: Statistical Mechanics and its Applications, pp. 144-156, 2014. [
DOI:10.1016/j.physa.2013.12.003]
3. [3] S. Fortunato, "Community detection in graphs," Physics Report, pp. 75-174, 2010. [
DOI:10.1016/j.physrep.2009.11.002]
4. [4] Newman, "Finding and evaluating community structure in networks," Physical, 2004. [
DOI:10.1103/PhysRevE.69.026113] [
PMID]
5. [5] B. J. J. L. e. a. Shang R, "Community detection based on modularity and an improved genetic algorithm," Physica A:Statistical Mechanics and its Applications, pp. 1215-1231, 2013. [
DOI:10.1016/j.physa.2012.11.003]
6. [6] Y. B. L. J. e. a. Jin D, "Ant colony optimization based on random walk for community detection in complex networks," Journal of Software, pp. 451-464, 2012. [
DOI:10.3724/SP.J.1001.2012.03996]
7. [7] A. A. P. M. Shadi Rahimi, A multi-objective particle swarm optimization algorithm for community detection in complex networks, ELSEVIER, 2017.
8. [8] C. Wu, T. Li, F. Teng and X. Chen, "An improved PSO algorithm for community detection," International Conference on Intelligent Systems and Knowledge Engineering, 2015. [
DOI:10.1109/ISKE.2015.53]
9. [9] T. C. Y. S. Y. N. X. Z. Fan Cheng, "A Local Information based Multi-objective Evolutionary Algorithm for Community Detection in Complex Networks," Applied Soft Computing Journal, pp. 42, 2018.
10. [10] I. I. a. T. G.Palla, "Uncovering the Overlapping Community Structure of Complex Networks in Nature and Society," Nature, pp. 814-818, 2015.
11. [11] X. L. I. Z. Faliang Huang, "Overlapping Community Detectionfor MultimediaSocial Networks," IEEE, pp. 12, 2017.
12. [12] J. Yang and J. Leskovec, "Community-Affiliation Graph Model for Overlapping Network Community Detection," IEEE 12th International Conference on Data Mining, pp. 14-19, 2012. [
DOI:10.1109/ICDM.2012.139]
13. [13] J. K. R. C. Eberhart, "New optimizer using particle swarm theory," In Proceedings of the 6th International Symposium on Micro Machine and Human Science, pp. 39-43, 1995.
14. [14] Schutt.J.F, B. I. Koh, J. A. Reinbolt, B. J. Fregly, R. T. Haftka and A. D. Geotge, "Evaluation of a Particle Swarm algorithm for biornechanical," Jornal of Bionechanical engineering , pp. 465-474, 2005. [
DOI:10.1115/1.1894388] [
PMID] [
PMCID]
15. [15] C. Zhang, X. Hei, D. Yang and L. Wang, "A Memetic Particle Swarm Optimization Algorithm for Community Detection in Complex Networks," International Journal of Pattern Recognition , vol. 30, no. 2, pp. 170-185, 2016. [
DOI:10.1142/S0218001416590035]
16. [16] G.-G. W. Deb, A. H. Gandomi and A. H. AlaviSuash, "A hybrid method based on krill herd and quantum-behaved particle swarm optimization," Neural Computing and Applications, 2016.
17. [17] Y.-C. L. ,. S. R. Raheel Ahmad, "A Multi-Agent Based Approach for Particle SwarmOptimization," International Conference on Integration of Knowledge Intensive Multi-Agent, pp. 267-271, 2007.
18. [18] M. Vasile and L. Ricciardi, "Multi Agent Collaborative Search," Springer International Publishing Switzerland, 2017. [
DOI:10.1007/978-3-319-44003-3_10]
19. [19] R. I. S Ismail, "Modularity approach for community detection in complex networks," ACM IMCOM '17 Proceedings of the 11th International Conference on Ubiquitous Information Management and Communication, 2017. [
DOI:10.1145/3022227.3022282]
20. [20] M. e. a. Shahmoradi, "Multilayer overlapping community detection using multi-objective optimization," Future Generation Computer Systems, 2019. [
DOI:10.1016/j.future.2019.05.061]
21. [21] "A Mixed Representation-Based Multiobjective Evolutionary Algorithm for Overlapping Community Detection," IEEE TRANSACTIONS ON CYBERNETICS, vol. 47, no. 9, pp. 2703 - 2716, 13 June 2017. [
DOI:10.1109/TCYB.2017.2711038] [
PMID]
22. [22] Gong, M., et al.," Complex network clustering by multiobjective discrete particle swarm optimization based on decomposition", IEEE Transactions on evolutionary computation, 2013. No, 18(1), pp. 82-97. [
DOI:10.1109/TEVC.2013.2260862]