دوره 18، شماره 1 - ( 3-1400 )                   جلد 18 شماره 1 صفحات 13-28 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Tahmasbi H, Jalali M, Shakeri H. A social recommender system based on matrix factorization considering dynamics of user preferences. JSDP 2021; 18 (1) :28-13
URL: http://jsdp.rcisp.ac.ir/article-1-929-fa.html
طهماسبی حمیدرضا، جلالی مهرداد، شاکری حسن. یک سامانه پیشنهاددهنده اجتماعی مبتنی بر تجزیه ماتریس با در‌نظر‌گرفتن پویایی علایق کاربران. پردازش علائم و داده‌ها. 1400; 18 (1) :28-13

URL: http://jsdp.rcisp.ac.ir/article-1-929-fa.html


دانشگاه آزاد اسلامی واحد مشهد
چکیده:   (2388 مشاهده)
در سال‌های اخیر، استفاده از سامانه‌‌های پیشنهاددهنده در شبکه‌های اجتماعی رشد قابل توجهی داشته است. در این سامانه‌‌ها، رفتار و علایق کاربران در طول زمان تغییر می‌کند و تطبیق سامانه‌های پیشنهاددهنده با این پویایی علایق و نیازهای کاربران به‌منظور ارائه پیشنهادات دقیق‌تر به کاربران ضروری است. علی‌رغم اهمیت این موضوع، اغلب سامانه‌‌های پیشنهاددهنده، رفتار پویای کاربر را در نظر نمی‌گیرند. در این مقاله، یک سامانه پیشنهاددهنده اجتماعی با در‌نظر‌گرفتن پویایی علایق کاربران ارائه می‌شود که از روش تجزیه ماتریس استفاده می‌کند. در مدل پیشنهادی با در‌نظر‌گرفتن این‌که هر کاربر الگوی تغییر علایق خاص خود را دارد، فرض می‌شود که علایق فعلی کاربر به علایق او در دوره زمانی قبلی بستگی دارد، و یک ماتریس انتقال علایق برای هر کاربر به‌منظور مدل‌کردن پویایی علایق کاربر بین دو دوره متوالی آموزش داده می‌شود و با ترکیب امتیازاتِ کاربران و اعتماد بین آن‌ها بر اساس روش تجزیه ماتریس، امتیازاتِ کاربران به اقلام پیش‌بینی می‌شود. ارزیابی‌ها بر روی مجموعه داده Epinions نشان می‌دهند که مدل پیشنهادی نسبت به روش‌های مقایسه‌شده، منجر به بهبود بیشتر دقت در پیش‌بینی امتیازات می‌‌شود. همچنین تحلیل پیچیدگی زمانی مدل پیشنهادی بیان‌گر مقیاس‌پذیر‌بودن این مدل  است.
متن کامل [PDF 1871 kb]   (1275 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: مقالات پردازش داده‌های رقمی
دریافت: 1397/8/22 | پذیرش: 1399/5/28 | انتشار: 1400/3/1 | انتشار الکترونیک: 1400/3/1

فهرست منابع
1. [1] حسینی منیره، نصرالهی مقصود، بقائی علی، "یک سامانه توصیه‎گر ترکیبی با استفاده از اعتماد و خوشه‎بندی دوجهته به‎منظور افزایش کارایی پالایش‎گروهی"، پردازش علائم و داده‌ها، 15 (2) : 119-132، 1397.
2. [1] M. Hosseini, M. Nasrollahi, and A. Baghaei. "A hybrid recommender system using trust and bi-clustering in order to increase the efficiency of collaborative filtering". JSDP, vol 15, no. 2, pp.119-132, 2018. [DOI:10.29252/jsdp.15.2.119]
3. [2] A. Y. Aravkin, K. R. Varshney, and L. Yang, "Dynamic matrix factorization with social influence," in 2016 IEEE International Workshop on Machine Learning for Signal Processing, 2016, pp. 1-6. [DOI:10.1109/MLSP.2016.7738846]
4. [3] H. Bao, Q. Li, S. S. Liao, S. Song, and H. Gao, "A new temporal and social PMF-based method to predict users' interests in micro-blogging," Decision Support Systems, vol. 55, no. 3, pp. 698-709, 2013. [DOI:10.1016/j.dss.2013.02.007]
5. [4] I. Barjasteh, R. Forsati, D. Ross, A. H. Esfahanian, and H. Radha, "Cold-start recommendation with provable Guarantees: A decoupled approach," IEEE Transactions on Knowledge and Data Engineering, vol. 28, no. 6, pp. 1462-1474, 2016. [DOI:10.1109/TKDE.2016.2522422]
6. [5] J. Cheng, Y. Liu, H. Zhang, X. Wu, and F. Chen, "A new recommendation algorithm based on user's dynamic information in complex social network," Mathematical Problems in Engineering, vol. 2015, pp. 1-6, 2015. [DOI:10.1155/2015/281629]
7. [6] W. Cheng, G. Yin, Y. Dong, H. Dong, and W. Zhang, "Collaborative filtering recommenda-tion on users' interest sequences," Plos One, vol. 11, no. 5, p. e0155739, 2016. [DOI:10.1371/journal.pone.0155739] [PMID] [PMCID]
8. [7] W.-S. Chin, B.-W. Yuan, M.-Y. Yang, Y. Zhuang, Y.-C. Juan, and C.-J. Lin, "LIBMF: a library for parallel matrix factorization in shared-memory systems," The Journal of Machine Learning Research, vol. 17, no. 1, pp. 2971-2975, 2016.
9. [8] E. Frolov and I. Oseledets, "Tensor methods and recommender systems," Wiley Inter-disciplinary Reviews: Data Mining and Knowledge Discovery, vol. 7, no. 3, pp. 1-41, 2017. [DOI:10.1002/widm.1201]
10. [9] J. Gaillard, "Recommender systems : Dynamic adaptation and argumentation.", Ph.D. disser-tation, Dept. Computer Science, Avignon Univ., Avignon, France, 2014.
11. [10] G. Guo, J. Zhang, and N. Yorke-Smith, "A novel recommendation model regularized with user trust and item ratings," IEEE Transactions on Knowledge and Data Engineering, vol. 28, no. 7, pp. 1607-1620, 2016. [DOI:10.1109/TKDE.2016.2528249]
12. [11] B. Ju, Y. Qian, M. Ye, R. Ni, and C. Zhu, "Using dynamic multi-task non-negative matrix factorization to detect the evolution of user preferences in collaborative filtering," PLoS ONE, vol. 10, no. 8, pp. 1-20, 2015. [DOI:10.1371/journal.pone.0135090] [PMID] [PMCID]
13. [12] Y. Koren, "Collaborative filtering with temporal dynamics," Communications of the ACM, vol. 53, no. 4, pp. 89-97, 2010. [DOI:10.1145/1721654.1721677]
14. [13] S. Li and Y. Fu, "Robust representations for response prediction," in Robust Repre-sentation for Data Analytics, Springer, pp. 147-174, 2017. [DOI:10.1007/978-3-319-60176-2_8]
15. [14] D. R. Liu, K. Y. Chen, Y. C. Chou, and J. H. Lee, "Online recommendations based on dynamic adjustment of recommendation lists," Knowledge-Based Systems, vol. 161, pp. 375-389, 2018. [DOI:10.1016/j.knosys.2018.07.038]
16. [15] Y. Y. Lo, W. Liao, C. S. Chang, and Y. C. Lee, "Temporal matrix factorization for tracking concept drift in individual user preferences," IEEE Transactions on Computational Social Systems, vol. 5, no. 1, pp. 156-168, 2018. [DOI:10.1109/TCSS.2017.2772295]
17. [16] W. Lu, S. Ioannidis, S. Bhagat, and L. V. S. Lakshmanan, "Optimal recommendations under attraction, aversion, and social influence," Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD '14, 2014, pp. 811-820. [DOI:10.1145/2623330.2623744] [PMCID]
18. [17] C. Luo, X. Cai, and N. Chowdhury, "Self-training temporal dynamic collaborative filtering," In Proceedings of the 18th Pacific-Asia Conference on Knowledge Discovery and Data Mining, Springer, 2014, pp. 461-472. [DOI:10.1007/978-3-319-06608-0_38]
19. [18] A. Mnih and R. Salakhutdinov, "Probabilistic matrix factorization," in Advances in Neural Information Processing Systems. Cambridge, MA, USA: MIT Press, 2008, pp. 1257-1264.
20. [19] J. Pan, Z. Ma, Y. Pang, and Y. Yuan, "Robust probabilistic tensor analysis for time-variant collaborative filtering," Neurocomputing, vol. 119, pp. 139-143, 2013. [DOI:10.1016/j.neucom.2012.03.035]
21. [20] F. S. F. Pereira, J. Gama, S. de Amo, and G. M. B. Oliveira, "On analyzing user preference dynamics with temporal social networks," Machine Learning, vol. 107, no. 11, pp. 1745-1773, 2018. [DOI:10.1007/s10994-018-5740-2]
22. [21] D. Rafailidis, "Modeling trust and distrust information in recommender systems via joint matrix factorization with signed graphs," in Proceedings of the 31st Annual ACM Symposium on Applied Computing, 2016, pp. 1060-1065. [DOI:10.1145/2851613.2851697]
23. [22] D. Rafailidis, P. Kefalas, and Y. Manolopoulos, "Preference dynamics with multimodal user-item interactions in social media recommendation," Expert Systems with Applications, vol. 74, pp. 11-18, 2017. [DOI:10.1016/j.eswa.2017.01.005]
24. [23] D. Rafailidis and A. Nanopoulos, "Modeling users preference dynamics and side information in recommender systems," IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 46, no. 6, pp. 782-792, 2016. [DOI:10.1109/TSMC.2015.2460691]
25. [24] C. Rana and S. K. Jain, "An evolutionary clustering algorithm based on temporal features for dynamic recommender systems," Swarm and Evolutionary Computation, vol. 14, pp. 21-30, 2014. [DOI:10.1016/j.swevo.2013.08.003]
26. [25] N. Sahoo, D. A. Tepper, and T. Mukhopadhyay, "A hidden markov model for collaborative filtering," MIS Quarterly, vol. 36, no. 4, pp. 1329-1356, 2012. [DOI:10.2307/41703509]
27. [26] Y. Shi, M. Larson, and A. Hanjalic, "Collaborative filtering beyond the user-item matrix : A survey of the state of the art and future challenges," ACM Computing Surveys (CSUR), vol. 47, no. 1, p. 3, 2014. [DOI:10.1145/2556270]
28. [27] A. P. Singh and G. J. Gordon, "Relational learning via collective matrix factorization," Proceeding of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD 08, 2008, pp. 650-658. [DOI:10.1145/1401890.1401969] [PMID]
29. [28] J. Z. Sun, D. Parthasarathy, and K. R. Varshney, "Collaborative kalman filtering for dynamic matrix factorization," IEEE Transactions on Signal Processing, vol. 62, no. 14, pp. 3499-3509, 2014. [DOI:10.1109/TSP.2014.2326618]
30. [29] H. Tahmasbi, M. Jalali, and H. Shakeri, "Modeling Temporal Dynamics of User Preferences in Movie Recommendation," in 2018 8th International Conference on Computer and Knowledge Engineering (ICCKE), 2018, pp. 194-199. [DOI:10.1109/ICCKE.2018.8566316]
31. [30] J. Tang, "Epinions Dataset." [Online]. Available: http://www.cse.msu.edu/~tang-jili/trust.html. [Accessed: 05-Jan-2018].
32. [31] J. Tang, H. Gao, A. Das Sarma, Y. Bi, and H. Liu, "Trust evolution: Modeling and its applications," IEEE Transactions on Knowledge and Data Engineering, vol. 27, no. 6, pp. 1724-1738, 2015. [DOI:10.1109/TKDE.2014.2382576]
33. [32] C. Tong, J. Qi, Y. Lian, J. Niu, and J. J. P. C. Rodrigues, "TimeTrustSVD: A collaborative filtering model integrating time, trust and rating information," Future Generation Computer Systems, vol. 93, pp. 933-941, 2019. [DOI:10.1016/j.future.2017.07.037]
34. [33] J. Wang, S. Zhang, X. Liu, Y. Jiang, and M. Zhang, "A novel collective matrix factorization model for recommendation with fine-grained social trust prediction," Con-currency Computation, vol. 29, no. 19, pp. 1-14, 2017. [DOI:10.1002/cpe.4233]
35. [34] H. Wu, K. Yue, Y. Pei, B. Li, Y. Zhao, and F. Dong, "Collaborative topic regression with social trust ensemble for recommendation in social media systems," Knowledge-Based Systems, vol. 97, pp. 111-122, 2016. [DOI:10.1016/j.knosys.2016.01.011]
36. [35] T. Wu, Y. Feng, J. Sang, B. Qiang, and Y. Wang, "A novel recommendation algorithm incorporating temporal dynamics, reviews and item correlation," IEICE TRANS-ACTIONS on Information and Systems, vol. 101, no. 8, pp. 2027-2034, 2018. [DOI:10.1587/transinf.2017EDP7387]
37. [36] L. Xiong, X. Chen, T.-K. Huang, J. Schneider, and J. G. Carbonell, "Temporal collaborative filtering with bayesian probabilistic tensor factorization," in Proceedings of the 2010 SIAM International Conference on Data Mining, 2010, pp. 211-222. [DOI:10.1137/1.9781611972801.19] [PMCID]
38. [37] B. Yang, Y. Lei, J. Liu, and W. Li, "Social collaborative filtering by trust," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 8, pp. 1633-1647, Aug. 2017. [DOI:10.1109/TPAMI.2016.2605085] [PMID]
39. [38] X. Yang, Y. Guo, Y. Liu, and H. Steck, "A survey of collaborative filtering based social recommender systems," Computer Communi-cations, vol. 41, pp. 1-10, 2014. [DOI:10.1016/j.comcom.2013.06.009]
40. [39] H. Yin, B. Cui, L. Chen, Z. Hu, and Z. Huang, "A temporal context-aware model for user behavior modeling in social media systems," in Proceedings of the 2014 ACM SIGMOD international conference on Management of data, 2014, no. 1, pp. 1543-1554. [DOI:10.1145/2588555.2593685] [PMID] [PMCID]
41. [40] Y. Yu, Y. Gao, H. Wang, and R. Wang, "Joint user knowledge and matrix factorization for recommender systems," World Wide Web, vol. 21, no. 4, pp. 1141-1163, 2018. [DOI:10.1007/s11280-017-0476-7]
42. [41] F. Yu, A. Zeng, S. Gillard, and M. Medo, "Network-based recommendation algorithms: A review," Physica A: Statistical Mechanics and its Applications, vol. 452, pp. 192-208, 2016. [DOI:10.1016/j.physa.2016.02.021]
43. [42] Z. Zhang and H. Liu, "Social recommendation model combining trust propagation and sequential behaviors," Applied Intelligence, vol. 43, no. 3, pp. 695-706, 2015. [DOI:10.1007/s10489-015-0681-y]
44. [43] F. Zhang, Q. Liu, and A. Zeng, "Timeliness in recommender systems," Expert Systems with Applications, vol. 85, pp. 270-278, 2017. [DOI:10.1016/j.eswa.2017.05.038]
45. [44] C. Zhang, K. Wang, H. Yu, J. Sun, and E.-P. Lim, "Latent factor transition for dynamic collaborative filtering," in Proceedings of the 2014 SIAM International Conference on Data Mining, 2014, pp. 452-460. [DOI:10.1137/1.9781611973440.52]
46. [45] W. Zhang, Y. Du, T. Yoshida, and Y. Yang, "DeepRec: A Deep Neural Network Approach to Recommendation with Item Embedding and Weighted Loss Function," Information Sciences, vol. 470, pp. 121-140, 2019. [DOI:10.1016/j.ins.2018.08.039]
47. [46] B. Zou, C. Li, L. Tan, and H. Chen, "GPUTENSOR: efficient tensor factorization for context-aware recommendations," Infor-mation Sciences, vol. 299, pp. 159-177, 2015. [DOI:10.1016/j.ins.2014.12.004]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این تارنما متعلق به فصل‌نامة علمی - پژوهشی پردازش علائم و داده‌ها است.