1. [1] Z. Hongtu et al, "Regression models for identifying noise sources in magnetic resonance images," Journal of the American Statistical Association, vol.104, no.486, pp.623-637, 2009. [
DOI:10.1198/jasa.2009.0029] [
PMID] [
PMCID]
2. [2] J. Mohan, V.Krishnaveni, and G.Yanhui , "A survey on the magnetic resonance image denoising methods," Biomedical Signal Processing and Control , vol.9, pp. 56-69, 2014. [
DOI:10.1016/j.bspc.2013.10.007]
3. [3] A.Macovski, "Noise in MRI," Magnetic Resonance in Medicin, vol.36,no.3, pp. 494-497, 1996. [
DOI:10.1002/mrm.1910360327] [
PMID]
4. [4] H. Gudbjartsson, P. Samuel Patz, "The Rician distribution of noisy MRI data," Magnetic resonance in medicine, vol.34, no.6, pp. 910-914, 1995. [
DOI:10.1002/mrm.1910340618] [
PMID] [
PMCID]
5. [5] L. He, R. Ian Greenshields, "A nonlocal maximum likelihood estimation method for Rician noise reduction in MR images," IEEE transactions on medical imaging, vol.28, no.2, pp. 165-172, 2009. [
DOI:10.1109/TMI.2008.927338] [
PMID]
6. [6] J. Sijbers & et al, "Estimation of the noise in magnitude MR images," Magnetic Resonance Imaging, vol.16, no.1, pp.87-90, 1998. [
DOI:10.1016/S0730-725X(97)00199-9]
7. [7] J. Sijbers & et al, "Maximum-likelihood estimation of Rician distribution parameters," IEEE Transactions on Medical Imaging. Vol.17, no.3, pp.357-361, 1998. [
DOI:10.1109/42.712125] [
PMID]
8. [8] J.Sijbers, A. J. Den Dekker, "Maximum likelihood estimation of signal amplitude and noise variance from MR data," Magnetic Resonance in Medicine, vol.51, no.3, pp.586-594, 2004. [
DOI:10.1002/mrm.10728] [
PMID]
9. [9] J.Rajan & et al, "Maximum likelihood estimation-based denoising of magnetic resonance images using restricted local neighborhoods," Physics in Medicine & Biology, vol.56, no.16, pp.5221, 2011. [
DOI:10.1088/0031-9155/56/16/009] [
PMID]
10. [10] J.Rajan & et al, "Nonlocal maximum likelihood estimation method for denoising multiple-coil magnetic resonance images," Magnetic Resonance Imaging, vol.30, no.10, pp. 1512-1518, 2012. [
DOI:10.1016/j.mri.2012.04.021] [
PMID]
11. [11] A. Tietze & et al, "Bayesian modeling of Dynamic Contrast Enhanced MRI data in cerebral glioma patients improves the diagnostic quality of hemodynamic parameter maps," PloS one, vol13, no.9, pp. e0202906, 2018. [
DOI:10.1371/journal.pone.0202906] [
PMID] [
PMCID]
12. [12] L.Lauwers & et al, "Analyzing Rice distributed functional magnetic resonance imaging data: a Bayesian approach," Measurement Science and Technology, vol.21, no.11, pp. 115804, 2010. [
DOI:10.1088/0957-0233/21/11/115804]
13. [13] M. Kay, M. Steven, "Fundamentals of statistical signal processing", vol. I: estimation theory, 1993.
14. [14] X. Qi, "Compression of Three-Dimensional Magnetic Resonance Brain Images," 2001.
15. [15] D.Selvathi, and V. Sathananthavathi, "Genetic algorithm based nonlocal maximum likelihood algorithm for MRI denoising," Int. J. Comput. Intell. Telecommun. Syst, vol.2, pp. 21-26, 2011.
16. [16] https://mr.usc.edu/download/data/