دوره 16، شماره 1 - ( 3-1398 )                   جلد 16 شماره 1 صفحات 124-111 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mostajer Kheirkhah F, Asghari H, Yazdani D. On the use of Textural Features and Neural Networks for Leaf Recognition. JSDP 2019; 16 (1) :111-124
URL: http://jsdp.rcisp.ac.ir/article-1-792-fa.html
مستاجر خیرخواه فاطمه، اصغری حبیب الله، یزدانی داراب. شناسایی گونه‌های گیاهی با استفاده از تصاویر برگ بر پایه ویژگی‌های بافت و شبکه عصبی. پردازش علائم و داده‌ها. 1398; 16 (1) :111-124

URL: http://jsdp.rcisp.ac.ir/article-1-792-fa.html


پژوهشکده فناوری اطلاعات جهاد دانشگاهی
چکیده:   (3918 مشاهده)
برگ گیاهان منبع اطلاعاتی مهمی برای پژوهش و شناسایی گیاهان هستند. استخراج این اطلاعات به‌طورعمومی توسط کارشناسان خبره کشاورزی انجام می­‌گیرد. از آنجا که برگ­ها ویژگی­‌های مناسبی را برای تشخیص انواع گونه‌­های گیاهی در سامانه‌های هوشمند فراهم می‌کنند، لذا استفاده از سامانه‌های هوشمند می‌­تواند به تشخیص خودکار گونه‌­های گیاهی کمک کند. این مقاله روش جدیدی را برای شناسایی برگ‌­های گونه‌­های گیاهی با استفاده از الگوریتم استخراج ویژگی بافت GIST ارائه می‌­دهد که یک روش استخراج ویژگی عمومی برای طبقه‌بندی تصاویر است. این روش دارای دقت خوبی در تعیین شباهت­‌ها بین اشیای یکسان در تصاویر مختلف است. در مرحله طبقه‌­بندی داده‌­ها نیز، از شبکه عصبی Patternnet که برای استخراج الگو مناسب است استفاده می‌شود. برای ارزیابی روش پیشنهادی، الگوریتم حاصل بر روی داده‌­های دو پایگاه داده معتبر که تنوع گیاهی زیادی دارند، اعمال شده است. مقایسه نتایج با الگوریتم‌­های متداول استخراج ویژگی از تصاویر برگ‌­ها نشان می‌­دهد که الگوریتم GIST علاوه‌بر سرعت مناسب، دارای دقت طبقه­‌بندی قابل قبولی به‌ویژه در تصاویر هم‌راستا و حتی تصاویر از نوع شبه‌پویش است.
متن کامل [PDF 3489 kb]   (2089 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: مقالات پردازش تصویر
دریافت: 1396/9/11 | پذیرش: 1397/10/19 | انتشار: 1398/3/20 | انتشار الکترونیک: 1398/3/20

فهرست منابع
1. [1] S. L. Pimm, C. N. Jenkins, R. Abell, T. M. Brooks, J. L. Gittleman, L.N. Joppa, P.H. Raven, C.M. Roberts, and J.O. Sexton, "The biodiversity of species and their rates of extinction, distribution, and protection," Science, vol. 344(6187), 2014. [DOI:10.1126/science.1246752] [PMID]
2. [2] A. Joly, H. Müller, H. Goëau, H. Glotin, C. Spampinato, A. Rauber, P. Bonnet, W. P. Vellinga, R. B. Fisher, and R. Planquè, "LifeCLEF: Multimedia life species identifica-tion," In EMR@ ICMR, pp. 7-13, April 2014. [DOI:10.1007/978-3-319-11382-1_20]
3. [3] A. R. Backes, D. Casanova, and O. M. Bruno, "A complex network-based approach for boundary shape analysis," Pattern Recognition, vol. 42(1), pp. 54-67, 2009. [DOI:10.1016/j.patcog.2008.07.006]
4. [4] C. Caballero and M. C. Aranda, "Plant species identification using leaf image retrieval," In Proceedings of the ACM International Con-ference on Image and Video Retrieval, July 2010. pp. 327-334. [DOI:10.1145/1816041.1816089]
5. [5] N. Kumar, P. N. Belhumeur, A. Biswas, D. W. Jacobs, W. J. Kress, I. C. Lopez, and J. V. Soares, "Leafsnap: A computer vision system for automatic plant species identification." In Computer Vision-ECCV 2012 Springer, Berlin, Heidelberg, pp. 502-516. [DOI:10.1007/978-3-642-33709-3_36]
6. [6] N. Sakai, S. Yonekawa, A. Matsuzaki, and H. Morishima, "Two-dimensional image analysis of the shape of rice and its application to separating varieties," Journal of Food Engineering, vol. 27(4), pp. 397-407, 1996. [DOI:10.1016/0260-8774(95)00022-4]
7. [7] J. X. Du, X. F. Wang, and G. J. Zhang, "Leaf shape based plant species recognition," Applied mathematics and computation," vol. 185 (2), pp.883-893, 2007. [DOI:10.1016/j.amc.2006.07.072]
8. [8] Z. Wang, Z. Chi, D. Feng, and Q. Wang, "Leaf image retrieval with shape features," In International Conference on Advances in Visual Information Systems, Springer, Berlin, Heidelberg, 2000. pp. 477-487. [DOI:10.1007/3-540-40053-2_42]
9. [9] T. Beghin, J. S. Cope, P. Remagnino, and S. Barman, "Shape and texture based plant leaf classification," In International Conference on Advanced Concepts for Intelligent Vision Systems Springer, Berlin, Heidelberg, December 2010. pp. 345-353. [DOI:10.1007/978-3-642-17691-3_32]
10. [10] B. S. Bama, S. M. Valli, S. Raju, and V. A. Kumar, "Content based leaf image retrieval (CBLIR) using shape, color and texture features," Indian Journal of Computer Science and Engineering, vol. 2(2), pp.202-211, 2011.
11. [11] H. Kebapci, B. Yanikoglu, and G. Unal, "Plant image retrieval using color, shape and texture features," The Computer Journal, vol. 54(9), pp.1475-1490, 2010. [DOI:10.1093/comjnl/bxq037]
12. [12] S. Abbasi, F. Mokhtarian, and J. Kittler, "Reliable classification of chrysanthemum leaves through curvature scale space," Scale-Space Theory in Computer Vision, pp. 284-295. 1997. [DOI:10.1007/3-540-63167-4_58]
13. [13] Z. Wang, Z. Chi, and D. Feng, "Fuzzy integral for leaf image retrieval," In Fuzzy Systems, Proceedings of the 2002 IEEE International Conference, Vol. 1, 2002. pp. 372-377.
14. [14] J. X. Du, C. M. Zhai, and Q. P. Wang, "Recognition of plant leaf image based on fractal dimension features," Neurocomputing, vol. 116, pp.150-156, 2013. [DOI:10.1016/j.neucom.2012.03.028]
15. [15] L. W. Yang and X. F. Wang, "Leaf image recognition using fourier transform based on ordered sequence," In International Conference on Intelligent Computing, Springer, Berlin, Heidelberg, 2012. pp. 393-400. [DOI:10.1007/978-3-642-31588-6_51]
16. [16] Q. P. Wang, J. X. Du, and C. M. Zhai, "Recognition of leaf image based on ring projection wavelet fractal feature," In Advanced Intelligent Computing Theories and Appli-cations. With Aspects of Artificial Intelligence, Springer, Berlin, Heidelberg, 2010. pp. 240-246. [DOI:10.1007/978-3-642-14932-0_30]
17. [17] S. Prasad, P. Kumar, and R. C. Tripathi, "Plant leaf species identification using curvelet transform," In IEEE Computer and Communi-cation Technology (ICCCT), 2011 2nd Inter-national Conference, September 2011. pp. 646-652. [DOI:10.1109/ICCCT.2011.6075212]
18. [18] A. Kadir, L. E. Nugroho, A. Susanto, and P. I. Santosa, "Experiments of Zernike moments for leaf identification," Journal of Theoretical and Applied Information Technology (JATIT), vol. 41(1), pp.82-93, 2012.
19. [19] J. Pan and Y. He, "Recognition of plants by leaves digital image and neural network," In IEEE Computer Science and Software Engineering, 2008 International Conference on Vol. 4, December 2008. pp. 906-910. [DOI:10.1109/CSSE.2008.918]
20. [20] S. G. Wu, F. S. Bao, E. Y. Xu, Y. X. Wang, Y. F. Chang, and Q. L. Xiang, "A leaf recognition algorithm for plant classification using pro-babilistic neural network," In Signal Processing and Information Technology, 2007 IEEE Inter-national Symposium, December 2007. pp. 11-16.
21. [21] C. A. Priya, T. Balasaravanan, and A. S. Thanamani, "An efficient leaf recognition algorithm for plant classification using support vector machine," In Pattern Recognition, Informatics and Medical Engineering (PRIME), 2012 International Conference on IEEE, March 2012. pp. 428-432. [DOI:10.1109/ICPRIME.2012.6208384]
22. [22] N. Valliammal and S. N. Geethalakshmi, "A novel approach for plant leaf image segmentation using fuzzy clustering," Inter-national Journal of Computer Applications, vol. 44(13), pp. 10-20, 2012. [DOI:10.5120/6322-8669]
23. [23] H. Goëau, A. Joly, S. Selmi, P. Bonnet, E. Mouysset, L. Joyeux, J. F. Molino, P. Birnbaum, D. Bathelemy, and N. Boujemaa, "Visual-based plant species identification from crowdsourced data," In Proceedings of the 19th ACM inter-national conference on Multimedia, November 2011. pp. 813-814. [DOI:10.1145/2072298.2072472]
24. [24] J. Wu and J. M. Rehg, "CENTRIST: A visual descriptor for scene categorization," IEEE transactions on pattern analysis and machine intelligence, vol. 33(8), pp. 1489-1501, 2011. [DOI:10.1109/TPAMI.2010.224] [PMID]
25. [25] C. Li, A. Kowdle, A. Saxena, and T. Chen, "Towards holistic scene understanding: Feedback enabled cascaded classification models," In Advances in Neural Information Processing Systems, 2010. pp. 1351-1359.
26. [26] Z. Li and L. Itti, "Saliency and gist features for target detection in satellite images," IEEE Transactions on Image Processing, vol. 20(7), pp. 2017-2029, 2011. [DOI:10.1109/TIP.2010.2099128] [PMID]
27. [27] A. C. Murillo, G. Singh, J. Kosecka, and J. J. Guerrero, "Localization in urban environments using a panoramic gist descriptor," IEEE Trans-actions on Robotics, vol. 29(1), pp. 146-160, 2013. [DOI:10.1109/TRO.2012.2220211]
28. [28] A. Farhadi, M. Hejrati, M. A. Sadeghi, P. Young, C. Rashtchian, J. Hockenmaier, and D. Forsyth, "Every picture tells a story: Generating sentences from images," In European con-ference on computer vision, Springer, Berlin, Heidelberg. Sep 2010. pp. 15-29. [DOI:10.1007/978-3-642-15561-1_2]
29. [29] R. Bharath, "Computer-Assisted Algorithms for Ultrasound Imaging Systems," Doctoral dissertationIndian Institute of Technology Hyderabad. 2018.
30. [30] F. Alaei, A. Alaei, U. Pal, and M. Blumenstein, "Evaluation of Gist Operator for Document Image Retrieval," In 2018 13th IAPR Inter-national Workshop on Document Analysis Systems (DAS) Apr 2018. pp. 369-374. [DOI:10.1109/DAS.2018.43]
31. [31] H. Yalcin, and S. Razavi, "Plant classification using convolutional neural networks," In Agro-Geoinformatics (Agro-Geoinformatics), 2016 Fifth Inter-national Conference, Jul 2016. pp. 1-5. [DOI:10.1109/Agro-Geoinformatics.2016.7577698] [PMCID]
32. [32] A. Caglayan, O. Guclu, and A. B. Can, "A plant recognition approach using shape and color features in leaf images," In International Conference on Image Analysis and Processing, Springer, Berlin, Heidelberg. September 2013. pp. 161-170. [DOI:10.1007/978-3-642-41184-7_17]
33. [33] E. J. Pauwels, P. M. de Zeeuw, and E. B. Ranguelova, "Computer-assisted tree taxonomy by automated image recognition," Engineering Applications of Artificial Intelligence, vol. 22(1), pp. 26-31, 2009. [DOI:10.1016/j.engappai.2008.04.017]
34. [34] J. Chaki, R. Parekh, and S. Bhattacharya, "Plant leaf recognition using texture and shape features with neural classifiers," Pattern Recognition Letters, vol. 58, pp. 61-68, 2015. [DOI:10.1016/j.patrec.2015.02.010]
35. [35] M. A. J. Ghasab, S. Khamis, F. Mohammad, and H. J. Fariman, "Feature decision-making ant colony optimization system for an automated recognition of plant species," Expert Systems with Applications, vol. 42(5), pp. 2361-2370, 2015. [DOI:10.1016/j.eswa.2014.11.011]
36. [36] Z. Zulkifli, P. Saad, and I. A. Mohtar, "Plant leaf identification using moment invariants & general regression neural network," In Hybrid Intelligent Systems (HIS), 2011 11th Inter-national Conference, December 2011. pp. 430-435. [DOI:10.1109/HIS.2011.6122144]
37. [37] A. H. Kulkarni, , H. M. Rai, , K. A. Jahagirdar, and P. S. Upparamani, "A leaf recognition technique for plant classification using RBPNN and Zernike moments," International Journal of Advanced Research in Computer and Communi-cation Engineering, vol. 2(1), pp.984-988, 2013.
38. [38] R. X. Hu, W. Jia, , H. Ling, and D. Huang, "Multiscale distance matrix for fast plant leaf recognition," IEEE Trans.Image Processing, vol. 21(11), pp.4667-4672, 2012. [DOI:10.1109/TIP.2012.2207391] [PMID]
39. [39] D. G. Tsolakidis, D. I. Kosmopoulos, and G. Papadourakis, "Plant leaf recognition using Zernike moments and histogram of oriented gradients," In Hellenic Conference on Artificial Intelligence, 2014, pp. 406-417. [DOI:10.1007/978-3-319-07064-3_33]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این تارنما متعلق به فصل‌نامة علمی - پژوهشی پردازش علائم و داده‌ها است.