1. [1] D. Liang, M. Zhichun, "Short-term load forecasting based on fuzzy neural network," Journal of University of Science and Technology Beijing, 4, pp. 46-49, 1997.
2. [2] K.H Kim, H.S Youn, Y.C. Kang, "Short-term Load Forecasting for Special Days in anomalous Load Conditions Using Neural Network and Fuzzy Inference Method," IEEE Transactions on Power Systems, vol.15, pp. 559-569, 2000. [
DOI:10.1109/59.867141]
3. [3] W. Charytoniuk, M. S. Chen, "Neural Network design for Short-Term Load Forecasting," Proceedings of International Conference on Electric Utility Deregulation and Restructuring and Power Technologies, London, pp. 4-7, 2000.
4. [4] Z. Tao, Z. Dengfu, Z. Lin, W. Xifan, X. Daozhi, "Short-Term Load Forecasting Using Radial Basis Function Networks and Expert system," Journal of XI'AN JIAOTONG University , vol.35, pp. 331-334, 2001.
5. [5] Z. Xin, C. Tian-Lun, "Nonlinear Time Series Forecast Using Radial Basis Function Neural Network," Commun. Theor. Phys, vol.40, pp.165-168, 2003. [
DOI:10.1088/0253-6102/40/2/165]
6. [6] V. S. Kodogiannis, E. M. Anagnostakis, "Soft computing based techniques for short-term load forecasting," Fuzzy Sets and Systems 128(3), pp. 413-426, 2002. [
DOI:10.1016/S0165-0114(01)00076-8]
7. [7] R.R.B. de Aquino, et.al, "Combined Artificial Neural Network and Adaptive Neuro-Fuzzy Inference System for Improving a Short-Term Electric Load Forecasting," Lecture Notes in Computer Science, 4669, 779-788, 2007. [
DOI:10.1007/978-3-540-74695-9_80]
8. [8] Musa, Abdallah Bashir. "A comparison of ℓ1-regularizion, PCA, KPCA and ICA for dimensionality reduction in logistic regression." International Journal of Machine Learning and Cybernetics 5.6 , pp.861-873, 2014. [
DOI:10.1007/s13042-013-0171-7]
9. [9] L. Cayton, Algorithms for manifold learning, University of California, San Diego, Tech. Report, 2005.
10. [10] I. Borg and P. Groenen, Modern Multidimen-sional Scaling: Theory and Applications. New York: Springer-Verlag, 1997. [
DOI:10.1007/978-1-4757-2711-1]
11. [11] J. B. Kruskal, "Multidimensal scaling by optimizing goodness of fit to a nonmetric hypothesis," Psychometrika, vol.29, pp. 1-27, 1964. [
DOI:10.1007/BF02289565]
12. [12] Ji, Rongrong, et al, "Towards Optimal Manifold Hashing via Discrete Locally Linear Embedding," IEEE Transactions on Image Processing, 2017. [
DOI:10.1109/TIP.2017.2735184] [
PMID]
13. [13] Liu, Xin, et al, "Locally linear embedding (LLE) for MRI based Alzheimer's disease classification," Neuroimage, vol. 83, pp.148-157.2013. [
DOI:10.1016/j.neuroimage.2013.06.033] [
PMID] [
PMCID]
14. [14] J. Yang, B. Ming Xiang, and Y. Zhang, "Multi-manifold Discriminant Isomap for visualization and classification," Pattern Recognition, vol. 55, pp. 215-230, 2016. [
DOI:10.1016/j.patcog.2016.02.001]
15. [15] M. Belkin ,and P. Niyogi, "Laplacian eigenmaps for dimensionality reduction and data representation," Neural Compute, vol. 15(6), pp. 1373-1396, 2003. [
DOI:10.1162/089976603321780317]
16. [16] Ye. Qiang, and W. Zhi, "Discrete hessian eigenmaps method for dimensionality reduction," Journal of Computational and Applied Mathematics, vol.278, pp.197-212, 2015. [
DOI:10.1016/j.cam.2014.09.011]
17. [17] Su, Zuqiang, et al., "Fault diagnosis method using supervised extended local tangent space alignment for dimension reduction," Meas-urement, vol. 62, pp.1-14, 2015. [
DOI:10.1016/j.measurement.2014.11.003]
18. [18] L. Haghverdi, F. Buettner, and J. Fabian, "Diffusion maps for high-dimensional single-cell analysis of differentiation data," Bioin-formatics, vol. 31.18, pp.2989-2998, 2015. [
DOI:10.1093/bioinformatics/btv325] [
PMID]
19. [19] Lunga, Dalton, et al. "Manifold-learning-based feature extraction for classification of hyperspectral data: A review of advances in manifold learnping," IEEE Signal Processing Magazine, vol. 31.1, pp.55-66, 2014. [
DOI:10.1109/MSP.2013.2279894]
20. [20] J. Wang, Z. Zhang, and H. Zha, "Adaptive manifold learning," In Advances in Neural Information Processing Systems, 2004.
21. [21] W. H Press, et al, Numerical Recipes in C: The Art of Scientific Computing, Cambridge University Press, pp. 616, 1992.
22. [22] فريبرز نيا روح الله, امجدي نيما، پيشبيني بار كوتاهمدت با استفاده از تجزيه سري زماني بار و شبكه عصبي، مجله مدلسازي در مهندسي، دوره 2، شماره 16، بهار 87
23. [22] R. Fariborznia, N. Amjadi, "short term load forecast by using time series decomposition of load and neural networks," Journal of Modeling in Engineering, vol.15 (16), 2007.
24. [23] سيد شنوا سيد جلال، قاسمي علي، شايقي حسين و نوشيار مهدي. ارايه يك مدل تركيبي در پيشبيني بار در بازار برق تجديد ساختار يافته. نشريه علمي پژوهشي كيفيت و بهرهوري صنعت برق ايران، سال دوم شماره سوم، بهار و تابستان 92
25. [23] S.sh. Seyed Jalal, et al, "A Composite Model for Load Forecasting in the Restructured Electricity Market," Journal of Quality and Productivity in Iran Electric Industry, vol.2(3), 2013.
26. [24] مشاري امير، ابراهيمي اكبر، صدري سعيد، ابراهيمي محمد. پالايش دادههاي آموزشي شبكه عصبي و بررسي تأثير آن در كاهش خطاي پيشبيني كوتاه مدت بار سيستمهاي قدرت. نشريه استقلال. سال 28. شماره 2. اسفند 88
27. [24] A. Moshari, et al., "Purification of Neural Network Train Data and its Effect on Reducing Short-Term Prediction Errors of Power Systems," Esteghlal Magazine. vol.28 (2), 2009.
28. [25] شايقي حسين، قاسمي علي. مدلسازي سيستم چند ورودي چند خروجي براي پيش بيني همزمان قيمت و بار در شبكه هوشمند با اعمال مديريت بار. نشريه هوش محاسباتي در مهندسي برق. سال ششم، شماره چهارم، زمستان 94.
29. [25] H. Shayeghi, et al, "Multi-Input Multi-output System Modeling for simultaneous prediction of price and load in the smart grid by applying load management," Journal of Computational Intelligence in Electrical Engineering, Vol. 6 (4), 2015.
30. [26] كريمي مازيار، كرمي حسين، غلامي مصطفي، خطيب زاده هادي، مسلمي نيكي. اولويتبندي روزهاي مشابه جهت پيشبيني بار كوتاه مدت شبكه ايران با در نظر گيري دما و بخشبندي سيستم قدرت. مجله انجمن مهندسي برق و الكترونيك ايران، سال چهاردهم، شماره سوم، پاييز 96
31. [26] M. Karimi , et al., "Prioritizing the same days to predict the short-term load of Iran's network by considering the temperature and power system segmentation," Journal of Iranian Association of Electrical and Electronics Engineers. Vol. 14 (3), 2016.
32. [27] قانعي يخدان حسين. روشي جديد براي اختفاي خطا در فريمهاي ويدئو با استفاده از شبكه عصبي RBF. فصلنامه علمي - پژوهشي پردازش علائم و دادهها، جلد دهم، شماره 1، آذر 92
33. [27] H. Ghanei yakhdan, "A new method to hide errors in video frames using RBF neural network," Journal of Signal and Data Processing, vol.10 (1), 2013.
34. [28] گوهريان نازنين، مقيمي سحر، غلامي مصطفي، كلاني هادي. استفاده از تركيب الگوريتم ژنتيك و شبكههاي عصبي مصنوعي براي پيشبيني نيروي گاز گرفتن از روي سيگنال الكترومايوگرام. فصلنامه علمي-پژوهشي پردازش علائم و دادهها، جلد چهاردهم، شماره 1، تير ماه 96.
35. [28] N. Goharian, et al., "Use of combination of genetic algorithm and artificial neural networks to predict the bite force from an electromyogram signal," Journal of Signal and Data Processing, Vol.14 (1), 2017.