1. [1] Ng. Eyk, "A review of thermography as promising non-invasive detection modality for breast tumor", International Journal of Thermal Sciences, vol.48, pp.849-859, 2009. [
DOI:10.1016/j.ijthermalsci.2008.06.015]
2. [2] M.Gautherie, "Thermobiological assessment of benign and malignant breast diseases", American Journal of Obstetrics and Gynecology, vol.147, pp.861-869, 1983. [
DOI:10.1016/0002-9378(83)90236-3]
3. [3] R. Hosseini and M. Mazinani, "A Mamdani Fuzzy Inference System for Breast Cancer Diagnosis in Intelligent Computer Aided Diagnosis System", 9th Symposium of Advances in Science and Technology, National Conference on Science and Computer Engineering, Mashhad, Iran, 2014.
4. [4] M. Grgic, K. Delac, M. Ghanbari, "Recent advances in multimedia signal processing and communications", A survey of image processing algorithms in digital mammography, Berlin Heidelberg: Springer, 2009, PP. 631-657. [
DOI:10.1007/978-3-642-02900-4_24]
5. [5] R. Hosseini and M. Mazinani, "Classification of Uncertainty sources in Intelligent Medical image analysis and understanding Applications", 9th Symposium of Advances in Science and Technology, National Conference on Science and Computer Engineering, Mashhad, Iran, 2014.
6. [6] R. Hosseini, SD. Qanadli, S. Barman, M. Mazinani, T. Ellis, and J. Dehmeshki, "Anau-tomatic approach for learning and tuning Gau-ssian interval type-2 fuzzy membershipfunctions applied to lung CAD classification system", IEEE Transactions on Fuzzy Systems, vol.20, pp.224-234, 2012. [
DOI:10.1109/TFUZZ.2011.2172616]
7. [7] F. Merikh Bayat, "Meta-Heuristic Optimization Algorithms", Second Edition, Jahad Daneshgahi Tehran, 2014.
8. [8] M. Pawar and S. Talbar, "Genetic Fuzzy System (GFS) based wavelet co-occurrence feature selec-tion in mammogram classification for breast cancer diagnosis", Perspectives in Science, vol. 8, pp.247-250, 2016. [
DOI:10.1016/j.pisc.2016.04.042]
9. [9] A. Srikrishna, E. Reddy, and VS. Srinivas, "Detection of Lesion in Mammogram Images Using Differential Evolution Based Automatic Fuzzy Clustering", Computational Intelligence Techniques in Health Care, pp. 61-68, 2016. [
DOI:10.1007/978-981-10-0308-0_5]
10. [10] KB. Soulami, MN. Saidi, A. Tamtaoui , "A CAD System for the Detection of Abnormalities in the Mammograms Using the Metaheuristic Algorithm Particle Swarm Optimization", Advances in Ubi-quitous Networking, vol. 397, pp. 505-517. 2017. [
DOI:10.1007/978-981-10-1627-1_40]
11. [11] D. Stylianos, Tzikopoulos, E. Michael Mavroforakis, V. Georgiou, Nikos Dimitropoulos, and Sergios Theodoridis, "A fully automated scheme for mammographic segmentation and classification based on breast density and asymmetry", Computer Methods and Programs in Biomedicine. vol.102, pp. 47-63, 2011. [
DOI:10.1016/j.cmpb.2010.11.016] [
PMID]
12. [12] R. Rouhi, M. Jafari, Sh. Kasaei, and P. Keshavarzian, "Benign and malignant breast tumors classification based on region growing and CNN segmentation", Expert Systems with Applications, vol. 42, pp.990-1002. 2015. [
DOI:10.1016/j.eswa.2014.09.020]
13. [13] G. Magna, S. Velappa Jayaraman, P. Casti P, A. Mencattini, C. Di Natale, and E. Martinelli, "Adaptive classification model based on arti-ficial immune system for breast cancer detec-tion", AISEM Annual Conference, Trento, Feb 3-5. 2015, pp.1-4. [
DOI:10.1109/AISEM.2015.7066842]
14. [14] Y. Chen, Y. Zhang, HM. Lu, XQ. Chen, JW. Li, and SH. Wang, "Wavelet energy entropy and linear regression classifier for detecting ab-normal breasts", Multimedia Tools And App-lications, 2016, pp. 1-20.
15. [15] JH. Holland , "Adaption in natural and artificial systems", University of Michigan Press, pp.232, 1975.
16. [16] AE. Eiben and JE. Smith, "Introduction to Evolutionary computing genetic algorithms", First Edition, Verlag Berlin Heidelberg: Springer, pp.300, 2003. [
DOI:10.1007/978-3-662-05094-1_3]
17. [17] T. Back , "Selective pressure in evolutionary algorithms: A characterization of selection mechanisms", Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE World Congress on Computational In-telligence, Orlando, FL, June 27-29, 1994, pp. 57-62.
18. [18] J. Kennedy and RC. Eberhart, "Particle Swarm Optimization", Proceedings of the IEEE International Conference on Neural Networks, 1995, vol. 4, pp. 1942-1948.
19. [19] Y. Shi and RC. Eberhart, "A Modified Particle Swarm Optimizer", Proceedings of the IEEE International Conference on Evolutionary Computation. Anchorage, AK, May 4-9, 1998, pp. 69-73.
20. [20] M. Nabab Alam, "Particle Swarm Optimization", Algorithms and its Codes in MATLAB, 2016.
21. [21] Y. Shi and RC. Eberhart, "Comparing Inertia Weights and Construction Factors in Particle Swarm Optimization", Proceedings of the IEEE International Conference on Evolutionary Computation. La Jolla, CA, July 16-19, 2000, PP.84-88.
22. [22] A. Wallace, "The Geographical Distribution of Animals", Boston, MA: Adamant Media Corporation, 2005.
23. [23] C. Darwin, The Origin of Species. New York: Gramercy, 1995.
24. [24] D. Simon, "Biogeography-Based Optimization", IEEE Transactions on Evolutionary Com-putation, vol. 12, pp.702-713, 2008. [
DOI:10.1109/TEVC.2008.919004]
25. [25] MIAS Database, Available from: h ttp://peipa.essex.ac.uk/info/mias.html, Updated on: Dec 2012.
26. [26] G. S. David Sam Jayakumar, Bejoy John Thomas, "A New Procedure Of Clustering Based on Multivariate Outlier Detection", Journal of Data Science, vol.11, pp.69-84, 2013.
27. [27] AP. Bradley, " The use of the area under the ROC curve in the evaluation of machine learning algorithms", Pattern Recognition, vol.30, pp.1145-1159. 1997. [
DOI:10.1016/S0031-3203(96)00142-2]
28. [28] T. Fawcett, "An introduction to ROC analysis", Pattern Recognition Letters, vol.27, pp.861-874. 2006. [
DOI:10.1016/j.patrec.2005.10.010]
29. [29] J. Ha, M. Kamber, and J. Pei, "Data Mining Concepts and Techniques", Chapter (5). 2006
30. [30] PN. Tan, M. Steinbach, and V. Kumar, "Introduction to Data Mining". Pearson Addison Wesley, Chapter (5), 2006.
31. [31] مهرگان مهدوی، حبیب آهکی، بابک ناصرشریف، طراحی یک سیستم تشخیص اسکناس مبتنی بر شبکه عصبی با استفاده از مشخصههای بافت و رنگ تصویر، مجله پردازش علایم و دادهها، دوره ۷، شماره ۲ - ۱۲-۱۳۸۹).
32. [31] M. Mahdavi, H. Ahaki, and B. NaserSharif, "Design of a Currency Recognition based on Neural Network and Image Texture and Color", Signal and Data Processing Journal, Issue 7, No 2, Feb. 2011.
33. [32] نازنین گوهریان، سحر مقیمی، هادی کلانی، استفاده از ترکیب الگوریتم ژنتیک و شبکههای عصبی مصنوعی برای پیشبینی نیروی گاز گرفتن از روی سیگنال الکترومایوگرام، مجله پردازش علایم و دادهها، دوره ۱۴، شماره ۱ - ( ۳-۱۳۹۶).
34. [32] N. Gohariyan, S.Moghimi, and H.Kalani, "Using a Combination of Genetic Algorithm and Artificial Neural Network for Predicting Power of Gas from Electromyogram Signal", Signal and Data Processing Journal, Issue 14, No. 1, Jun 2017.