1. [1] علیزاده، حسین، مشکی، محسن، پروین، حمید، مینایی بیدگلی، بهروز، "خوشهبندی ترکیبی مبتنی بر زیرمجموعهای از خوشههای اولیه"، پردازش علائم و دادهها، ۷ (۱) :۱۹-۳۲، ۱۳۸۹.
2. [1] H. Alizadeh, M. Moshki, H. Parvin, B. Minaei Bidgoli, "Clustering Ensemble based on combination of subset of primary clusters", JSDP; 7 (1):19-32, 2010.
3. [2] G. Adomavicius, and A. Tuzhilin, "Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions", IEEE transactions on knowledge and data engineering, 17(6):734-49, 2005 Jun, [
DOI:10.1109/TKDE.2005.99]
4. [3] C. Basu, H. Hirsh, and W. Cohen, "Recommenda-tion as classification: Using social and content-based information in recommenda-tion", InAaai/iaai, pp. 714-720, 1998 Jul 1.
5. [4] J. Bobadilla, F. Ortega, A. Hernando, and A. Gutiérrez, "Recommender systems survey", Knowledge-Based Systems, 46:109-32, 2013. [
DOI:10.1016/j.knosys.2013.03.012]
6. [5] J. S. Breese, D. Heckerman, and C. Kadie, "Empirical analysis of predictive algorithms for collaborative filtering". InProceedings of the Fourteenth conference on Uncertainty in artificial intelligence, Morgan Kaufmann Publishers Inc, pp. 43-52, 1998 Jul 24.
7. [6] D. U. Yongping, and L. HUANG, "Improve the Collaborative Filtering Recommender System Performance by Trust Network Construction", Chinese Journal of Electronics, 25(3):418-23, 2016 May. [
DOI:10.1049/cje.2016.05.005]
8. [7] A. Felfering, G. Friedrich, and L. S. Thieme, "Recommender Systems", Intelligent Systems IEEE, 22, pp. 18-22, 2007. [
DOI:10.1109/MIS.2007.52]
9. [8] L. Gao, and C. Li, "Hybrid personalized recommended model based on genetic algorithm", In2008 4th International Conference on Wireless Communications, Networking and Mobile Computing, IEEE, 12, pp. 1-4, 2008 Oct.
10. [9] T. George, and S. Merugu, "A scalable collaborative filtering framework based on co-clustering", InFifth IEEE International Confer-ence on Data Mining (ICDM'05), IEEE, pp. 4-pp, 2005 Nov 27.
11. [10] F. Gorunescu, "Data Mining: Concepts, models and techniques", Springer Science & Business Media, Vol. 12, 2011.
_4
_3
_5
_1
_2
_6 [
DOI:10.1007/978-3-642-19721-5]
12. [11] G. Guo, J. Zhang, and D. Thalmann, "Merging trust in collaborative filtering to alleviate data sparsity and cold start", Knowledge-Based Systems, 57:57-68, 2014. [
DOI:10.1016/j.knosys.2013.12.007]
13. [12] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl, "Evaluating collaborative filtering recommender systems", ACM Transactions on Information Systems (TOIS), 22(1):5-3, 2004 Jan 1. [
DOI:10.1145/963770.963772]
14. [13] Y. Ho, D. Fong, and Z. Yan, "A Hybrid GA-based Collaborative Filtering Model for Online Recommenders", InIce-b, pp. 200-203, 2007.
15. [14] H. Ingoo, J. O. Kyong, and H. R. Tae, "The collaborative filtering recommendation based on SOM cluster-indexing CBR", Expert Systems with Applications, 25(3):413-23, 2003. [
DOI:10.1016/S0957-4174(03)00067-8]
16. [15] D. Jannach, and M. Zanker, A. Felfering, and G. Friedrich, "Recommender Systems an introduce-tion", Cambridge University Press, New York, 2013.
17. [16] R. Katarya, and O. P. Verma, "A collaborative recommender system enhanced with particle swarm optimization technique", Multimedia Tools and Applications, 1-5, 2016. [
DOI:10.1007/s11042-016-3481-4]
18. [17] K. J. Kim, and H. Ahn, "A recommender system using GA K-means clustering in an online shopping market", Expert systems with applications, 34(2):1200-9, 2008 Feb 29. [
DOI:10.1016/j.eswa.2006.12.025]
19. [18] S. C. Kim, C. S. Park, and S. K. Kim, "A Hybrid Recommendation System Using Trust Scores in a Social Network", Embedded and Multimedia Computing Technology and Service, 107-112, 2012.
20. [19] U. Kużelewska, and K. Wichowski, "A Modified Clustering Algorithm DBSCAN Used in a Collaborative Filtering Recommender System for Music Recommendation", InTheory and Engineering of Complex Systems and Depend-ability, Springer International Publish-ing, pp. 245-254, 2015.
21. [20] N. Lathia, S. Hailes, and L. Capra, "Trust-based collaborative filtering", InIFIP International Conference on Trust Management 2008 Jun 18, Springer US, pp. 119-134, 2008.
22. [21] T. Q. Lee, Y. Park, and Y. T. Park, "A time-based approach to effective recommender systems using implicit feedback", Expert systems with applications; 34(4):3055-62, 2008 May 31 [
DOI:10.1016/j.eswa.2007.06.031]
23. [22] Y. M. Li, C. T. Wu, and C. Y. Lai, "A social recommender mechanism for e-commerce: Combining similarity, trust, and relationship", Decision Support Systems, 55(3):740-52, 2013 Jun 30. [
DOI:10.1016/j.dss.2013.02.009]
24. [23] X. Luo, Y. Xia, and Q. Zhu, "Incremental collaborative filtering recommender based on regularized matrix factorization", Knowledge-Based Systems, 27:271-80, 2012 Mar 31. [
DOI:10.1016/j.knosys.2011.09.006]
25. [24] N. Manouselis, and K. Verbert, "Layered evaluation of multi-criteria collaborative filtering for scientific paper recommendation", Procedia Computer Science, 18:1189-97, 2013 Dec 31. [
DOI:10.1016/j.procs.2013.05.285]
26. [25] L. Martinez, R. M. Rodriguez, and M. Espinilla, "Reja: a georeferenced hybrid recommender system for restaurants", InProceedings of the 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology, IEEE Computer Society, Volume 03, pp. 187-190, 2009 Sep 15.
27. [26] T. M. Murali, and S. Kasif, "Extracting conserved gene expression motifs from gene expression data", InPacific symposium on Biocomputing, Vol. 8, pp. 77-88, 2003.
28. [27] M. Nilashi, O. Ibrahim, N. Ithnin, and N. H. Sarmin, "A multi-criteria collaborative filtering recommender system for the tourism domain using Expectation Maximization (EM) and PCA–ANFIS", Electronic Commerce Research and Applications, 14(6):542-62, 2015 Nov 30. [
DOI:10.1016/j.elerap.2015.08.004]
29. [28] M. H. Park, J. H. Hong, and S. B. Cho, "Location-based recommendation system using bayesian user's preference model in mobile devices", InInternational Conference on Ubiquitous Intelligence and Computing, Springer Berlin Heidelberg, pp. 1130-1139, 2007 Jul 1.
30. [29] A. Prelić, S. Bleuler, P. Zimmermann, A. Wille, P. Bühlmann, W. Gruissem, L. Hennig, L. Thiele, and E. Zitzler, "A systematic comparison and evaluation of biclustering methods for gene expression data", Bioinformatics, 22(9):1122-9, 2006 May 1. [
DOI:10.1093/bioinformatics/btl060] [
PMID]
31. [30] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, "Item-based collaborative filtering recommenda-tion algorithms", InProceedings of the 10th international conference on World Wide Web, ACM, pp. 285-295, 2001 Apr 1.
32. [31] J. B. Schafer, J. Konstan, and J. Riedl, "Recommender systems in e-commerce", InProceedings of the 1st ACM conference on Electronic commerce, ACM, pp. 158-166, 1999 Nov 1.
33. [32] A. A. Shabalin, V. J. Weigman, C. M. Perou, and A. B. Nobel, "Finding large average submatrices in high dimensional data", The Annals of Applied Statistics, 985-1012, 2009 Sep 1. [
DOI:10.1214/09-AOAS239]
34. [33] X. Shen, H. Long, and C. Ma, "Incorporating trust relationships in collaborative filtering recom-mender system", InSoftware Engineering, Arti-ficial Intelligence, Networking and Parallel/Distributed Computing (SNPD), 2015 16th IEEE/ACIS International Conference, pp. 1-8, 2015 Jun 1.
35. [34] T. H. Soliman, S. A. Mohamed, and A. A. Sewisy, "Developing a mobile location-based collabora-tive Recommender System for GIS applica-tions", InComputer Engineering & Systems (ICCES), 2015 Tenth International Conference, IEEE, pp. 267-273, 2015 Dec 23.
36. [35] P. Symeonidis, A. Nanopoulos, A. N. Papadopoulos, and Y. Manolopoulos, "Nearest-biclusters collaborative filtering based on constant and coherent values", Information retrieval, 11(1):51-75, 2008 Feb 1; [
DOI:10.1007/s10791-007-9038-4]
37. [36] P. Victor, M. De Cock, and C. Cornelis, "Trust and recommendations", InRecommender syst-ems handbook 2011, Springer US, pp. 645-675, 2011.
38. [37] B. Xu, J. Bu, C. Chen, and D. Cai, "An exploration of improving collaborative recomm-ender systems via user-item subgroups", InPro-ceedings of the 21st international conference on World Wide Web, ACM, pp. 21-30, 2012 Apr 16.
39. [38] R. R. Yager, "Fuzzy logic methods in recomm-ender systems", Fuzzy Sets and Systems, 136(2):133-49, 2003 Jun 1. [
DOI:10.1016/S0165-0114(02)00223-3]
40. [39] S. Yan, "A Collaborative Filtering Recommender Approach by Investigating Interactions of Interest and Trust", InKnowledge Engineering and Management, Springer Berlin Heidelberg, pp. 173-188, 2014.
41. [40] X. Yang, Y. Guo, Y. Liu, and H. Steck, "A survey of collaborative filtering based social recomm-ender systems", Computer Communica-tions, 41:1-0, 2014 Mar 15. [
DOI:10.1016/j.comcom.2013.06.009]
42. [41] W. Yuan, D. Guan, Y. K. Lee, S. Lee, and S. J. Hur, "Improved trust-aware recommender system using small-worldness of trust networks", Knowledge-Based Systems, 23(3):232-8, 2010 Apr 30. [
DOI:10.1016/j.knosys.2009.12.004]
43. [42] N. Zheng, and Q. Li, "A recommender system based on tag and time information for social tagging systems", Expert Systems with Applications, 38(4):4575-87, 2011 Apr 30. [
DOI:10.1016/j.eswa.2010.09.131]
44. [43] R. Zhu, and S. Gong, "Analyzing of collaborative filtering using clustering technology", In Computing, Communication, Control, and Management. CCCM 2009, ISECS International Colloquium on Vol. 4, pp. 57-59, IEEE, 2009.