1. Z. Su, Q. Zhang, Z. L¨u, C.-M. Li, W. Lin, and F. Ma, "Weightingbased variable neighborhood search for optimal camera placement," Proc. Conf. AAAI Artif. Intell., vol. 35, no. 14, pp. 12400-12408, 2021. [
DOI:10.1609/aaai.v35i14.17471]
2. P. Bischoff, "Surveillance camera statistics: which cities have the most CCTV cameras?" Comparitech, 15-Aug-2019. [Online].Available: https://www.comparitech.com/vpn-privacy/the-worlds-mostsurveilled-cities/. [Accessed: 06-Jun-2023].
3. J. Liu, X. Wang, Y. Li, X. Kang, and L. Gao, "Method of evaluating and predicting traffic state of highway network based on deep learning," J. Adv. Transp., vol. 2021, pp. 1-9, 2021. [
DOI:10.1155/2021/8878494]
4. L. Fredianelli et al., "Traffic flow detection using camera images and machine learning methods in ITS for noise map and action plan optimization," Sensors (Basel), vol. 22, no. 5, p. 1929, 2022. [
DOI:10.3390/s22051929]
5. A. A. Altahir, V. S. Asirvadam, P. Sebastian, N. H. B. Hamid, and E. F. Ahmed, "Optimizing visual sensors placement with risk maps using dynamic programming," IEEE Sens. J., vol. 22, no. 1, pp. 393-404, 2022. [
DOI:10.1109/JSEN.2021.3127989]
6. S. Kov'acs, B. Bolem'anyi, and J. Botzheim, "Placement of optical sensors in 3D terrain using a bacterial evolutionary algorithm," Sensors (Basel), vol. 22, no. 3, p. 1161, 2022. [
DOI:10.3390/s22031161]
7. A. M. Heyns, "Optimisation of surveillance camera site locations and viewing angles using a novel multi-attribute, multi-objective genetic algorithm: A day/night anti-poaching application," Comput. Environ. Urban Syst., vol. 88, no. 101638, p. 101638, 2021. [
DOI:10.1016/j.compenvurbsys.2021.101638]
8. M. S. S. Suresh, A. Narayanan, and V. Menon, "Maximizing camera coverage in multicamera surveillance networks," IEEE Sens. J., vol. 20, no. 17, pp. 10170-10178, 2020. [
DOI:10.1109/JSEN.2020.2992076]
9. A. Bhattacharya and M. Pal, "Vertex covering problems of fuzzy graphs and their application in CCTV installation," Neural Comput. Appl., vol. 33, no. 11, pp. 5483-5506, 2021. [
DOI:10.1007/s00521-020-05324-5]
10. Y. Chen, M. Tsukada, and H. Esaki, "Reinforcement learning based optimal camera placement for depth observation of indoor scenes," 2021. [
DOI:10.1109/ICNSC52481.2021.9702214]
11. W. J. Yun et al., "Cooperative multi-agent deep reinforcement learning for reliable surveillance via autonomous multi-UAV control," arXiv [eess.SY], 2022. [
DOI:10.1109/TII.2022.3143175]
12. D. Susanj, D. Pincic, and K. Lenac, "Effective area coverage of 2D and 3D environments with directional and isotropic sensors," IEEE Access, vol. 8, pp. 185595-185608, 2020. [
DOI:10.1109/ACCESS.2020.3029618]
13. [X. Chen, Y. Zhu, H. Chen, Y. Ouyang, X. Luo, and X. Wu, "BIM-based optimization of camera placement for indoor construction monitoring considering the construction schedule," Autom. Constr., vol. 130, no. 103825, p. 103825, 2021. [
DOI:10.1016/j.autcon.2021.103825]
14. N. Bisagno, A. Xamin, F. De Natale, N. Conci, and B. Rinner, "Dynamic camera reconfiguration with reinforcement learning and stochastic methods for crowd surveillance," Sensors (Basel), vol. 20, no. 17, p. 4691, 2020. [
DOI:10.3390/s20174691]
15. S. Jun, T.-W. Chang, H. Jeong, and S. Lee, "Camera placement in smart cities for maximizing weighted coverage with budget limit," IEEE Sens. J., vol. 17, no. 23, pp. 7694-7703, 2017. [
DOI:10.1109/JSEN.2017.2723481]
16. C.-J. Liu, Z. Liu, Y.-J. Chai, and T.-T. Liu, "Review of virtual traffic simulation and its applications," J. Adv. Transp., vol. 2020, pp. 1-9, 2020. [
DOI:10.1155/2020/8237649]
17. Z. Xie, X. Liu, Y. Li, H. Zhang, and Q. Xiang, "Camera placement optimization for CCTV in rail transit using BIM," Measurement + control/Measurement and control, vol. 56, no. 9-10, pp. 1499-1509, Mar. 2023. [
DOI:10.1177/00202940231163935]
18. M. S. Eran and H. Hasranizam, "The Effectiveness of Crime Prevention Using GIS Technology and CCTV Application for Smart City," Earth and environmental sciences library, pp. 59-75, Jan. 2024. [
DOI:10.1007/978-3-031-50848-6_4]
19. G. Li, Y. Chen, Y. Wang, P. Nie, Z. Yu, and Z. He, "City-scale synthetic individual-level vehicle trip data," Sci. Data, vol. 10, no. 1, 2023. [
DOI:10.1038/s41597-023-01997-4]
20. V. T. N. Nha, S. Djahel, and J. Murphy, "A comparative study of vehicles' routing algorithms for route planning in smart cities," in 2012 First International Workshop on Vehicular Traffic Management for Smart Cities (VTM), 2012.
21. P. Udhan, A. Ganeshkar, P. Murugesan, A. R. Permani, S. Sanjeeva, and P. Deshpande, "Vehicle route planning using dynamically weighted Dijkstra's algorithm with traffic prediction," 2022.