1. Heider, D., et al., A computational approach for the identification of small GTPases based on preprocessed amino acid sequences. Technology in cancer research & treatment, 2009. 8(5): p. 333-341. [
DOI:10.1177/153303460900800503]
2. Löchel, H.F., et al., SCOTCH: subtype A coreceptor tropism classification in HIV-1. Bioinformatics, 2018. 34(15): p. 2575-2580. [
DOI:10.1093/bioinformatics/bty170]
3. Heider, D. and D. Hoffmann, Interpol: An R package for preprocessing of protein sequences. BioData mining, 2011. 4(1): p. 1-6. [
DOI:10.1186/1756-0381-4-16]
4. Armano, G. and A. Giuliani, A two-tiered 2d visual tool for assessing classifier performance. Information Sciences, 2018. 463: p. 323-343. [
DOI:10.1016/j.ins.2018.06.052]
5. Yu, X., I. Weber, and R. Harrison. Sparse representation for HIV-1 protease drug resistance prediction. in Proceedings of the 2013 SIAM international conference on data mining. 2013. SIAM. [
DOI:10.1137/1.9781611972832.38]
6. Spänig, S. and D. Heider, Encodings and models for antimicrobial peptide classification for multi-resistant pathogens. BioData Mining, 2019. 12(1): p. 1-29. [
DOI:10.1186/s13040-019-0196-x]
7. Zhang, J., et al., Variable selection from a feature representing protein sequences: a case of classification on bacterial type IV secreted effectors. BMC bioinformatics, 2020. 21: p. 1-15. [
DOI:10.1186/s12859-020-03826-6]
8. De Santis, E., et al. Dissimilarity space representations and automatic feature selection for protein function prediction. in 2018 International joint conference on neural networks (IJCNN). 2018. IEEE. [
DOI:10.1109/IJCNN.2018.8489115]
9. Bonetta, R. and G. Valentino, Machine learning techniques for protein function prediction. Proteins: Structure, Function, and Bioinformatics, 2020. 88(3): p. 397-413. [
DOI:10.1002/prot.25832]
10. Rizzo, R., et al. Classification experiments of DNA sequences by using a deep neural network and chaos game representation. in Proceedings of the 17th International Conference on Computer Systems and Technologies 2016. 2016. [
DOI:10.1145/2983468.2983489]
11. Qian, W., et al., Feature selection for label distribution learning via feature similarity and label correlation. Information Sciences, 2022. 582: p. 38-59. [
DOI:10.1016/j.ins.2021.08.076]
12. Abu Khurma, R., et al., A review of the modification strategies of the nature inspired algorithms for feature selection problem. Mathematics, 2022. 10(3): p. 464. [
DOI:10.3390/math10030464]
13. Törönen, P. and L. Holm, PANNZER-a practical tool for protein function prediction. Protein Science, 2022. 31(1): p. 118-128. [
DOI:10.1002/pro.4193]
14. Lv, Z., C. Ao, and Q. Zou, Protein function prediction: from traditional classifier to deep learning. Proteomics, 2019. 19(14): p. 1900119. [
DOI:10.1002/pmic.201900119]
15. Mahood, E.H., L.H. Kruse, and G.D. Moghe, Machine learning: a powerful tool for gene function prediction in plants. Applications in Plant Sciences, 2020. 8(7): p. e11376. [
DOI:10.1002/aps3.11376]
16. Martino, A., A. Rizzi, and F.M.F. Mascioli. Supervised approaches for protein function prediction by topological data analysis. in 2018 International joint conference on neural networks (IJCNN). 2018. IEEE. [
DOI:10.1109/IJCNN.2018.8489307]
17. You, R., et al., NetGO: improving large-scale protein function prediction with massive network information. Nucleic acids research, 2019. 47(W1): p. W379-W387. [
DOI:10.1093/nar/gkz388]
18. Lai, B. and J. Xu, Accurate protein function prediction via graph attention networks with predicted structure information. Briefings in Bioinformatics, 2022. 23(1): p. bbab502. [
DOI:10.1093/bib/bbab502]
19. Liu, X., Deep recurrent neural network for protein function prediction from sequence. arXiv preprint arXiv:1701.08318, 2017. [
DOI:10.1101/103994]
20. Kulmanov, M. and R. Hoehndorf, DeepGOPlus: improved protein function prediction from sequence. Bioinformatics, 2020. 36(2): p. 422-429. [
DOI:10.1093/bioinformatics/btz595]
21. Sureyya Rifaioglu, A., et al., DEEPred: automated protein function prediction with multi-task feed-forward deep neural networks. Scientific reports, 2019. 9(1): p. 7344. [
DOI:10.1038/s41598-019-43708-3]
22. Li, M., et al., A deep learning framework for predicting protein functions with co-occurrence of GO terms. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2022. 20(2): p. 833-842. [
DOI:10.1109/TCBB.2022.3170719]
23. Shen, H.-B. and K.-C. Chou, Nuc-PLoc: a new web-server for predicting protein subnuclear localization by fusing PseAA composition and PsePSSM. Protein Engineering, Design & Selection, 2007. 20(11): p. 561-567. [
DOI:10.1093/protein/gzm057]
24. Akbar, S., et al., iHBP-DeepPSSM: Identifying hormone binding proteins using PsePSSM based evolutionary features and deep learning approach. Chemometrics and Intelligent Laboratory Systems, 2020. 204: p. 104103. [
DOI:10.1016/j.chemolab.2020.104103]
25. Jones, D.T., Protein secondary structure prediction based on position-specific scoring matrices. Journal of molecular biology, 1999. 292(2): p. 195-202. [
DOI:10.1006/jmbi.1999.3091]
26. Altschul, S.F., et al., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic acids research, 1997. 25(17): p. 3389-3402. [
DOI:10.1093/nar/25.17.3389]
27. Chou, K.C., Prediction of protein cellular attributes using pseudo‐amino acid composition. Proteins: Structure, Function, and Bioinformatics, 2001. 43(3): p. 246-255. [
DOI:10.1002/prot.1035]
28. Bhasin, M. and G.P. Raghava, Classification of nuclear receptors based on amino acid composition and dipeptide composition. Journal of Biological Chemistry, 2004. 279(22): p. 23262-23266. [
DOI:10.1074/jbc.M401932200]
29. Sorkhi, A.G., J. Pirgazi, and V. Ghasemi, A hybrid feature extraction scheme for efficient malonylation site prediction. Scientific Reports, 2022. 12(1): p. 5756. [
DOI:10.1038/s41598-022-08555-9]
30. Pirgazi, J., A.R. Khanteymoori, and M. Jalilkhani, GENIRF: An algorithm for gene regulatory network inference using rotation forest. Current Bioinformatics, 2018. 13(4): p. 407-419. [
DOI:10.2174/1574893612666170731120830]
31. Rhee, S.-Y., et al., Genotypic predictors of human immunodeficiency virus type 1 drug resistance. Proceedings of the National Academy of Sciences, 2006. 103(46): p. 17355-17360. [
DOI:10.1073/pnas.0607274103]
32. Heider D, Verheyen J, Hoffmann D. Machine learning on normalized protein sequences. BMC research notes. 2011 Dec;4:1-0. [
DOI:10.1186/1756-0500-4-94]
33. Hou, T. Zhang, W. Wang, J. Wang, W., Predicting drug resistance of the HIV‐1 protease using molecular interaction energy components. Proteins: Structure, Function, and Bioinformatics. 2009 Mar; 74(4): p. 837-46. [
DOI:10.1002/prot.22192]
34. Löchel HF, Eger D, Sperlea T, Heider D. Deep learning on chaos game representation for proteins. Bioinformatics. 2020 Jan 1;36(1): p. 272-9. [
DOI:10.1093/bioinformatics/btz493]