دوره 21، شماره 2 - ( 8-1403 )                   جلد 21 شماره 2 صفحات 14-3 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mir M, Noferesti S. Using Data Augmentation Techniques for Sentiment Analysis of Users’ Opinions on Reopening of Schools During the Covid-19 Epidemic. JSDP 2024; 21 (2) : 1
URL: http://jsdp.rcisp.ac.ir/article-1-1385-fa.html
میر مرضیه، نوفرستی سمیرا. به‌کارگیری روشهای دادهافزایی برای تحلیل احساسات کاربران درباره بازگشایی مدارس در دوران همه‌گیری کووید-19. پردازش علائم و داده‌ها. 1403; 21 (2) :3-14

URL: http://jsdp.rcisp.ac.ir/article-1-1385-fa.html


دانشیار گروه فناوری اطلاعات، دانشکده مهندسی برق و کامپیوتر، دانشگاه سیستان و بلوچستان، زاهدان، ایران
چکیده:   (41 مشاهده)
ازجمله روش‌­های موفق برای تحلیل احساسات، روش­‌های یادگیری باناظر است که با آموزش یک طبقهبند بر روی یک مجموعهداده آموزشی از نظرات دارای برچسب احساس، یک مدل پیش­‌بینیکننده می­‌سازند که قادر است، جملات جدید را طبقه­‌بندی کند. در زبان فارسی، نبود داده‌های آموزشیِ کافی و دقت کم ابزارهای پردازش زبان طبیعی، بهکارگیری الگوریتم‌های باناظر و نیز استخراج ویژگیهای باکیفیت را با چالش جدی روبهرو ساختهاست. هدف مقاله حاضر به‌­کارگیری روشهای یادگیری ماشین باناظر برای طبقه­‌بندی نظرات مطرحشده توسط کاربران فارسی زبان در رسانه‌های اجتماعی درباره بازگشایی مدارس در دوران همه‌گیری کووید-19 است. برای غلبه بر مشکل کمبود داده‌­های آموزشی یک روش ترکیبی برای داده‌افزایی پیشنهاد شده‌است که اندازه مجموعه آموزش را حدود 97درصد افزایش می­دهد. نتایج آزمایشهای انجامگرفته نشان می‌دهد که با اعمال روش پیشنهادی برای داده‌افزایی و بهکارگیری ویژگیهای انتخابی در این مقاله، بهترتیب دقت 81 و 79درصد برای طبقه‌بندی نظرات با استفاده از الگوریتمهای ماشین بردار پشتیبان و شبکه عصبی پیچشی حاصل میشود.
شماره‌ی مقاله: 1
متن کامل [PDF 786 kb]   (21 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: مقالات پردازش متن
دریافت: 1402/3/19 | پذیرش: 1402/12/6 | انتشار: 1403/8/14 | انتشار الکترونیک: 1403/8/14

فهرست منابع
1. Liu, B., "Sentiment analysis and opinion mining", Synthesis lectures on human language technologies, Vol. 5, No. 1, pp. 1-167, 2012. [DOI:10.2200/S00416ED1V01Y201204HLT016]
2. Ahangari Ahangarkolaei, M., Sebti, A. and Yaghoubi, M., "Automatically generate sentiment lexicon for the Persian stock market", Signal and Data Processing, Vol. 20, No. 2, pp. 3-20, 2023. [DOI:10.61186/jsdp.20.2.3]
3. Noferesti, S. and Shamsfard, M., "A semantic framework based on domain knowledge for opinion mining of drug reviews", Journal of applied research and technology, Vol. 20, No. 6, pp. 652-667, 2022. [DOI:10.22201/icat.24486736e.2022.20.6.868]
4. Rajabi, Z., Valavi, M. and Hourali M., "Sentiment analysis methods in Persian text: A survey", Signal and Data Processing, Vol. 19, No. 2, pp. 107-132, 2019. [DOI:10.52547/jsdp.19.2.107]
5. Catelli, R., Pelosi, S., Comito, C., Pizzuti, C. and Esposito, M., "Lexicon-based sentiment analysis to detect opinions and attitude towards COVID-19 vaccines on Twitter in Italy", Computers in Biology and Medicine, Vol. 158, pp. 106876, 2023. [DOI:10.1016/j.compbiomed.2023.106876]
6. Huang, M., Xie, H., Rao, Y., Liu, Y., Poon, L. K. and Wang, F. L., "Lexicon-based sentiment convolutional neural networks for online review analysis", IEEE Transactions on Affective Computing, 2020.
7. Baccianella, S., Esuli, A. and Sebastiani, F., "Sentiwordnet 3.0: an enhanced lexical resource for sentiment analysis and opinion mining", LREC. 2010.
8. Cambria, E., Liu, Q., Decherchi, S., Xing, F. and Kwok, K., "SenticNet 7: A commonsense-based neurosymbolic AI framework for explainable sentiment analysis", In Proceedings of the Thirteenth Language Resources and Evaluation Conference, pp. 3829-3839, 2022.
9. Dashtipour, K., Hussain, A., Zhou, Q., Gelbukh, A., Hawalah, A.Y. and Cambria, E., "PerSent: A freely available Persian sentiment lexicon", In International Conference on Brain Inspired Cognitive Systems, pp. 310-320, Springer, Cham, 2016. [DOI:10.1007/978-3-319-49685-6_28]
10. Sabeti, B., Hosseini, P., Ghassem-Sani, G. and Mirroshandel, S.A., "LexiPers: An ontology based sentiment lexicon for Persian", arXiv preprint arXiv:1911.05263, 2019.
11. Revathy, G., Alghamdi, S.A., Alahmari, S.M., Yonbawi, S.R., Kumar, A. and Haq, M.A., "Sentiment analysis using machine learning: Progress in the machine intelligence for data science", Sustainable Energy Technologies and Assessments, Vo. 53, pp. 102557, 2022. [DOI:10.1016/j.seta.2022.102557]
12. Wang, Y., Chen, Q., Shen, J., Hou, B., Ahmed, M. and Li, Z., "Aspect-level sentiment analysis based on gradual machine learning", Knowledge-Based Systems, Vol. 212, pp.106509, 2021. [DOI:10.1016/j.knosys.2020.106509]
13. Riaz, S., Fatima, M., Kamran, M. and Nisar, M.W., "Opinion mining on large scale data using sentiment analysis and k-means clustering", Cluster Computing, Vol. 22, No. 3, pp. 7149-7164, 2019. [DOI:10.1007/s10586-017-1077-z]
14. Shams, M., Shakery, A. and Faili, H., "A non-parametric LDA-based induction method for sentiment analysis", In The 16th CSI international symposium on artificial intelligence and signal processing (AISP 2012). IEEE, 2012. [DOI:10.1109/AISP.2012.6313747]
15. Najafzadeh, M., Rahati Quchan, S. and Ghaemi, R., "A Semi-supervised Framework Based on Self-constructed Adaptive Lexicon for Persian Sentiment Analysis", Signal and Data Processing, Vol. 15, No. 2, pp. 89-102, 2018. [DOI:10.29252/jsdp.15.2.89]
16. Mendon, S., Dutta, P., Behl, A. and Lessmann, S., "A Hybrid approach of machine learning and lexicons to sentiment analysis: enhanced insights from twitter data of natural disasters", Information Systems Frontiers, pp.1-24, 2021. [DOI:10.1007/s10796-021-10107-x]
17. Ahangari, M. and Sebti, A., "A Hybrid Approach to Sentiment Analysis of Iranian Stock Market User's Opinions", International Journal of Engineering, Vol. 36, No. 3, pp.573-584, 2023. [DOI:10.5829/IJE.2023.36.03C.18]
18. Imran, A.S., Daudpota, S.M., Kastrati, Z. and Batra, R., "Cross-cultural polarity and emotion detection using sentiment analysis and deep learning on COVID-19 related tweets", IEEE Access, Vol. 8, pp.181074-181090, 2020. [DOI:10.1109/ACCESS.2020.3027350]
19. Manguri, K. H., Ramadhan, R. N. and Amin, P. R. M., "Twitter sentiment analysis on worldwide COVID-19 outbreaks", Kurdistan Journal of Applied Research, pp. 54-65, 2020. [DOI:10.24017/covid.8]
20. Kaur, C. and Sharma, A., "Twitter Sentiment Analysis on Coronavirus using Textblob", EasyChair, 2020.
21. Ra, M., Ab, B. and Kc, S., "COVID-19 outbreak: Tweet based analysis and visualization towards the influence of coronavirus in the World", 2020.
22. Costola, M., Hinz, O., Nofer, M. and Pelizzon, L., "Machine learning sentiment analysis, Covid-19 news and stock market reactions", Research in International Business and Finance, pp. 101881, 2023. [DOI:10.1016/j.ribaf.2023.101881]
23. Leelawat, N., Jariyapongpaiboon, S., Promjun, A., Boonyarak, S., Saengtabtim, K., Laosunthara, A., Yudha, A.K. and Tang, J., "Twitter data sentiment analysis of tourism in Thailand during the COVID-19 pandemic using machine learning", Heliyon, Vol. 8, No. 10, pp. e10894, 2022. [DOI:10.1016/j.heliyon.2022.e10894]
24. Miller, G. A., "WordNet: a lexical database for English", Communications of the ACM, Vol. 38, No. 11, pp. 39-41, 1995. [DOI:10.1145/219717.219748]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این تارنما متعلق به فصل‌نامة علمی - پژوهشی پردازش علائم و داده‌ها است.