دوره 21، شماره 1 - ( 3-1403 )                   جلد 21 شماره 1 صفحات 38-27 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Parvinnia E, Safari M, khayami S. Exploring on rotating machines abnormal state with data mining in protective parameters. JSDP 2024; 21 (1) : 3
URL: http://jsdp.rcisp.ac.ir/article-1-1351-fa.html
پروین نیا الهام، صفری محمد، خیامی سید علیرضا. تشخیص حالت غیر نرمال ماشین های دوار با داده کاوی در پارامترهای حفاظتی. پردازش علائم و داده‌ها. 1403; 21 (1) :27-38

URL: http://jsdp.rcisp.ac.ir/article-1-1351-fa.html


دانشگاه آزاد اسلامی واحد شیراز
چکیده:   (316 مشاهده)
برای محافظت از ماشین­ های دوار و جلوگیری از کارکرد آنها در حالت­های غیر عادی به ­صورت سنتی از سیستم­های کنترل حفاظتی و داده­ های فرایندی بهره­ گیری می­ شود. در این مقاله روشی پیشنهاد شده است که بتوان از تاثیرات غیر مستقیم حالت­های کارکرد غیر عادی با استفاده از شیوه­ های داده ­کاوی حالت غیر طبیعی کارکرد ماشین ­های دوار را تشخیص داد. یکی از حالت ­های خطرناک کارکرد غیر عادی در کمپرسورها به­ عنوان یکی از ماشین­ های دوار با اهمیت در صنایع، وضعیت سرج می­ باشد. دراین مقاله، با استفاده از داده های واقعی ذخیره شده در طول سه سال متوالی یک کمپرسور سه مرحله ای واحد سرمایش یک پالایشگاه گاز ارتباط میان وضعیت سرج کمپرسور و میزان لرزش نقاط مختلف آن بررسی شده است. با شیوه ­های داده­ کاوی اثبات شده است که ارتباط مستقیمی بین حالت سرج و میزان لرزش وجود دارد. همچنین نقاط حساس­ تر به لرزش در زمان­های سرج شناسایی شده است و اثبات شده است که از طریق اندازه­ گیری این نقاط می­توان سرج را تشخیص داد. بنابراین  علاوه بر شیوه­ های موجود و سنتی قبلی که از داده­ های فرایندی استفاده می­ کنند، می­توان از میزان لرزش نقاط به­ عنوان یک سیستم حفاظتی افزونه برای تشخیص سرج  بهره گرفت و از این طریق حفاظت بیشتری از کمپرسور در برابر وضعیت سرج  بعمل آورد. در این مطالعه، ارزیابی شیوه ­های مختلف داده­ کاوی نیز صورت گرفته است که نتایج روش نزدیکترین همسایه با تعداد همسایه دو دارای بهترین کارایی بوده است و همچنین اثرات تعداد رکورد موجود در مجموعه داده روی کیفیت و دقت نتایج بررسی شده است.
شماره‌ی مقاله: 3
متن کامل [PDF 821 kb]   (67 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: مقالات پردازش داده‌های رقمی
دریافت: 1401/8/22 | پذیرش: 1402/12/6 | انتشار: 1403/5/13 | انتشار الکترونیک: 1403/5/13

فهرست منابع
1. پروین نیا، فرداد، "ارائه یک سامانه تصمیم یار جهت پیش بینی خاموشی اضطراری نیروگاه های برق آبی با استفاده از استخراج قوانین انجمنی"، نشریه علمی پژوهشی کیفیت و بهره‌وری صنعت برق ایران، شماره 13، 15- 27، 1397.
2. L. Chang Zheng, X. Bing, Compressor Surge Detection Based on Online Learning, Third International Conference on Intelligent Human-Machine Systems and Cybernetics, Vol. 2 , PP. 123-126, 2011 [DOI:10.1109/IHMSC.2011.100]
3. A. Chaouni, Benabdellah, A. Benghabrit, I. Bouhaddou, A survey of clustering algorithms for an industrial context, Second International Conference on Intelligent Computing in Data Sciences (ICDS 2018), 2019 [DOI:10.1016/j.procs.2019.01.022]
4. A. Contreras-Valdes, JP. Amezquita-Sanchez, D. Granados-Lieberman, M. Valtierra-Rodriguez, Predictive data mining techniques for fault diagnosis of electric equipment: a review. Applied Sciences,2020. [DOI:10.3390/app10030950]
5. R.H. Cunha, I.N. DaSilva, A. Goedtl, W.F. Godoy, A Comprehensive Evaluation of Intelligent Classifiers for Fault Identification in Three Phases Induction Motors, Electric Power System Research, Vol.127, PP.249-258, 2015 [DOI:10.1016/j.epsr.2015.06.008]
6. M. Diaz, D. Morinigo Sotelo, O. Duque Perez, Advances in Classifier Evaluation: Novel Insight for an Electric Data Driven Motor Diagnosis, IEEE Access, Vol.4, PP.7028-7038, 2016 [DOI:10.1109/ACCESS.2016.2622679]
7. M. Gribbestad, MU. Hassan, IA. Hameed, K. Sundli, Health Monitoring of Air Compressors Using Reconstruction-Based Deep Learning for Anomaly Detection with Increased Transparency, Entropy, 2021. [DOI:10.3390/e23010083]
8. L. Guo, Y. Lei, S. Xing, T. Yan, N. Li, Deep Convolutional Transfer Learning Network: A New Method for Intelligent Fault Diagnosis of Machines with Unlabeled Data, IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2018 [DOI:10.1109/TIE.2018.2877090]
9. A. Kusiak, A. Verma, Analyzing Bearing Fault in Wind Turbines: A Datamining Approach, Renewable Energy, Vol.48, PP.110-116,2012 [DOI:10.1016/j.renene.2012.04.020]
10. G.K. McMillan, Centrifugal And Axial Compressor Control, Momentum Press, 2010
11. M. Orkisz, P. Lipnicki, " International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM)", Electronic ISBN: 978-1-4799-4749-2, 2014 [DOI:10.1109/SPEEDAM.2014.6871978]
12. A. Purarjomand Langrudi, A. Ghapanchi, M. Esmalifalak, A Datamining Approach for Fault Diagnosis: An Application of Anomaly Detection Algorithm, Measurement, Vol. 55, PP. 343-352, 2014 [DOI:10.1016/j.measurement.2014.05.029]
13. A. Sivakumar, S. Vaithiyanathan, Vibration based Data Analysis of Single Acting Compressor through Condition Monitoring and Multilayer Perceptron-A Machine Learning Classifier, InIOP Conference Series: Materials Science and Engineering, 2021. [DOI:10.1088/1757-899X/1012/1/012032]
14. P.N. Tan, M. Steinbach, V. Kumar, Introduction To Data mining, Pearson,2005
15. L. Wen, X. Li, L. Gao, Y. Zhang, A New Convolutional Neural Network Based Data-Driven Fault Diagnosis Method, IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2017
16. A. Contreras-Valdes, JP. Amezquita-Sanchez, D. Granados-Lieberman, M. Valtierra-Rodriguez, Predictive data mining techniques for fault diagnosis of electric equipment: a review, Applied Sciences, 2020. [DOI:10.3390/app10030950]
17. L. Zhong, Y. Liu, J. Zhao, W. Wang, Deep predictive controller designed for centrifugal compressor system anti-surge, In2020 Chinese Automation Congress (CAC), 2020 [DOI:10.1109/CAC51589.2020.9327381]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این تارنما متعلق به فصل‌نامة علمی - پژوهشی پردازش علائم و داده‌ها است.