دوره 20، شماره 4 - ( 12-1402 )                   جلد 20 شماره 4 صفحات 66-45 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

moradi B, Khalaj M, Taghizadeh Harat A. Improved Ensemble Learning Model by Swarm Intelligence for Mobile Subscribers’ Churn Prediction. JSDP 2024; 20 (4) : 4
URL: http://jsdp.rcisp.ac.ir/article-1-1344-fa.html
مرادی بیژن، خلج مهران، تقی زاده هرات علی. الگوی یادگیری جمعی بهبود‌یافته با هوش ازدحامی جهت پیش‌بینی ریزش مشترکان تلفن همراه. پردازش علائم و داده‌ها. 1402; 20 (4) :45-66

URL: http://jsdp.rcisp.ac.ir/article-1-1344-fa.html


دانشگاه ازاد اسلامی واحد پرند و رباط کریم
چکیده:   (525 مشاهده)
ازآنجاکه در شرکت‌های مخابرات همراه، هزینۀ حفظ مشتریان فعلی بسیار کمتر از هزینۀ جذب مشتریان جدید است، پیش‌بینی دقیق امکان ریزش هریک از مشتریان و جلوگیری از آن، امری ضروری ‌است. بنابراین، پژوهشگران روش‌های کارآمدی را با استفاده از ابزارهای داده‌کاوی و هوش ‌مصنوعی برای شناسایی مشتریانی که قصد روی‌گردانی دارند، ارائه کرده‌اند. در این مقاله، ما به‌منظور بهبود فرایند پیش‌بینی ریزش مشتری، یک راهکار مؤثر مبتنی‌بر یادگیری جمعی پیشنهاد می‌کنیم که در آن از الگوریتم بهینه‌سازی گرگ خاکستری، به‌منظور انتخاب ویژگی‌های مؤثر و همچنین تنظیم شاخص‌های آزاد الگوی پیشنهادی، استفاده شده‌است. سپس، به‌منظور ارزیابی عملکرد روش پیشنهادی، آن را با استفاده از دو مجموعه‌دادۀ ریزش مشتری شبیه‌سازی کرده و نتایج حاصل را به کمک معیارهای ارزیابی شامل صحت، دقت، یادآوری، امتیاز F1 و AUC با سایر روش‌های مشابه مقایسه کرده‌ایم. نتایج به‌دست‌آمده برتری روش پیشنهادی بر سایر راهکارهای ارزیابی‌شده را نشان می‌دهد.
 
شماره‌ی مقاله: 4
متن کامل [PDF 1147 kb]   (133 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: مقالات پردازش داده‌های رقمی
دریافت: 1401/8/3 | پذیرش: 1401/10/5 | انتشار: 1403/2/6 | انتشار الکترونیک: 1403/2/6

فهرست منابع
1. [1] W. Jianxun, "A study on customer acquisition cost and customer retention cost: Review and outlook," INNOVATION AND MANAGEMENT, 2012.
2. [2] A. Bilal Zorić, "Predicting customer churn in banking industry using neural networks," Interdisciplinary Description of Complex Systems: INDECS, vol. 14, no. 2, pp. 116-124, 2016. [DOI:10.7906/indecs.14.2.1]
3. [3] K. G. M. Karvana, S. Yazid, A. Syalim, and P. Mursanto, "Customer churn analysis and prediction using data mining models in banking industry," in 2019 International Workshop on Big Data and Information Security (IWBIS), 2019, pp. 33-38: IEEE. [DOI:10.1109/IWBIS.2019.8935884]
4. [4] A. Keramati, H. Ghaneei, and S. M. Mirmohammadi, "Developing a prediction model for customer churn from electronic banking services using data mining," Financial Innovation, vol. 2, no. 1, pp. 1-13, 2016. [DOI:10.1186/s40854-016-0029-6]
5. [5] J. Kaur, V. Arora, and S. Bali, "Influence of technological advances and change in marketing strategies using analytics in retail industry," International journal of system assurance engineering and management, vol. 11, no. 5, pp. 953-961, 2020. [DOI:10.1007/s13198-020-01023-5]
6. [6] A. Dingli, V. Marmara, and N. S. Fournier, "Comparison of deep learning algorithms to predict customer churn within a local retail industry," International journal of machine learning and computing, vol. 7, no. 5, pp. 128-132, 2017. [DOI:10.18178/ijmlc.2017.7.5.634]
7. [7] A. Idris and A. Khan, "Churn prediction system for telecom using filter-wrapper and ensemble classification," The Computer Journal, vol. 60, no. 3, pp. 410-430, 2017.
8. [8] T. Vafeiadis, K. I. Diamantaras, G. Sarigiannidis, and K. C. Chatzisavvas, "A comparison of machine learning techniques for customer churn prediction," Simulation Modelling Practice and Theory, vol. 55, pp. 1-9, 2015. [DOI:10.1016/j.simpat.2015.03.003]
9. [9] "IBM Telco customer churn," https://www.kaggle.com/datasets/blastchar/telco-customer-churn, 2018.
10. [10] J. Burez and D. Van den Poel, "Handling class imbalance in customer churn prediction," Expert Systems with Applications, vol. 36, no. 3, pp. 4626-4636, 2009. [DOI:10.1016/j.eswa.2008.05.027]
11. [11] G. Bonaccorso, Machine learning algorithms. Packt Publishing Ltd, 2017.
12. [12] D. W. Hosmer Jr, S. Lemeshow, and R. X. Sturdivant, Applied logistic regression. John Wiley & Sons, 2013. [DOI:10.1002/9781118548387]
13. [13] J. R. Quinlan, "Induction of decision trees," Machine learning, vol. 1, no. 1, pp. 81-106, 1986. [DOI:10.1007/BF00116251]
14. [14] I. Rish, "An empirical study of the naive Bayes classifier," in IJCAI 2001 workshop on empirical methods in artificial intelligence, 2001, vol. 3, no. 22, pp. 41-46.
15. [15] Z. Pawlak, "Rough sets," International journal of computer & information sciences, vol. 11, no. 5, pp. 341-356, 1982. [DOI:10.1007/BF01001956]
16. [16] C. Cortes and V. Vapnik, "Support-vector networks," Machine learning, vol. 20, no. 3, pp. 273-297, 1995. [DOI:10.1007/BF00994018]
17. [17] M. H. Hassoun, Fundamentals of artificial neural networks. MIT press, 1995. [DOI:10.1109/JPROC.1996.503146]
18. [18] A. Idris, A. Khan, and Y. S. Lee, "Genetic programming and adaboosting based churn prediction for telecom," in 2012 IEEE international conference on Systems, Man, and Cybernetics (SMC), 2012, pp. 1328-1332: IEEE. [DOI:10.1109/ICSMC.2012.6377917]
19. [19] Y. Beeharry and R. Tsokizep Fokone, "Hybrid approach using machine learning algorithms for customers' churn prediction in the telecommunications industry," Concurrency and Computation: Practice and Experience, vol. 34, no. 4, p. e6627, 2022. [DOI:10.1002/cpe.6627]
20. [20] P. Lalwani, M. K. Mishra, J. S. Chadha, and P. Sethi, "Customer churn prediction system: a machine learning approach," Computing, vol. 104, no. 2, pp. 271-294, 2022. [DOI:10.1007/s00607-021-00908-y]
21. [21] S. Mirjalili, S. M. Mirjalili, and A. Lewis, "Grey wolf optimizer," Advances in engineering software, vol. 69, pp. 46-61, 2014. [DOI:10.1016/j.advengsoft.2013.12.007]
22. [22] M. C. Mozer, R. Wolniewicz, D. B. Grimes, E. Johnson, and H. Kaushansky, "Predicting subscriber dissatisfaction and improving retention in the wireless telecommunications industry," IEEE Transactions on neural networks, vol. 11, no. 3, pp. 690-696, 2000. [DOI:10.1109/72.846740] [PMID]
23. [23] J. Hadden, A. Tiwari, R. Roy, and D. Ruta, "Computer assisted customer churn management: State-of-the-art and future trends," Computers & Operations Research, vol. 34, no. 10, pp. 2902-2917, 2007. [DOI:10.1016/j.cor.2005.11.007]
24. [24] K. Coussement and D. Van den Poel, "Churn prediction in subscription services: An application of support vector machines while comparing two parameter-selection techniques," Expert systems with applications, vol. 34, no. 1, pp. 313-327, 2008. [DOI:10.1016/j.eswa.2006.09.038]
25. [25] P. C. Pendharkar, "Genetic algorithm based neural network approaches for predicting churn in cellular wireless network services," Expert Systems with Applications, vol. 36, no. 3, pp. 6714-6720, 2009. [DOI:10.1016/j.eswa.2008.08.050]
26. [26] R. Yu, X. An, B. Jin, J. Shi, O. A. Move, and Y. Liu, "Particle classification optimization-based BP network for telecommunication customer churn prediction," Neural Computing and Applications, vol. 29, no. 3, pp. 707-720, 2018. [DOI:10.1007/s00521-016-2477-3]
27. [27] M. Imani, "Customer Churn Prediction in Telecommunication Using Machine Learning: A Comparison Study," AUT Journal of Modeling and Simulation, vol. 52, no. 2, pp. 8-8, 2020.
28. [28] S. Wu, W.-C. Yau, T.-S. Ong, and S.-C. Chong, "Integrated churn prediction and customer segmentation framework for telco business," IEEE Access, vol. 9, pp. 62118-62136, 2021. [DOI:10.1109/ACCESS.2021.3073776]
29. [29] "telecom churn (cell2cell)," https://www.kaggle.com/datasets/jpacse/datasets-for-churn-telecom, 2018.
30. [30] E. Hanif, "Applications of data mining techniques for churn prediction and cross-selling in the telecommunications industry," Dublin Business School, 2019.
31. [31] J. Pamina, B. Raja, S. SathyaBama, M. Sruthi, and A. VJ, "An effective classifier for predicting churn in telecommunication," Jour of Adv Research in Dynamical & Control Systems, vol. 11, 2019.
32. [32] N. I. Mohammad, S. A. Ismail, M. N. Kama, O. M. Yusop, and A. Azmi, "Customer churn prediction in telecommunication industry using machine learning classifiers," in Proceedings of the 3rd international conference on vision, image and signal processing, 2019, pp. 1-7. [DOI:10.1145/3387168.3387219]
33. [33] S. Agrawal, A. Das, A. Gaikwad, and S. Dhage, "Customer churn prediction modelling based on behavioural patterns analysis using deep learning," in 2018 International conference on smart computing and electronic enterprise (ICSCEE), 2018, pp. 1-6: IEEE. [DOI:10.1109/ICSCEE.2018.8538420]
34. [34] A. Amin, F. Al-Obeidat, B. Shah, A. Adnan, J. Loo, and S. Anwar, "Customer churn prediction in telecommunication industry using data certainty," Journal of Business Research, vol. 94, pp. 290-301, 2019. [DOI:10.1016/j.jbusres.2018.03.003]
35. [35] S. Momin, T. Bohra, and P. Raut, "Prediction of customer churn using machine learning," in EAI International Conference on Big Data Innovation for Sustainable Cognitive Computing, 2020, pp. 203-212: Springer. [DOI:10.1007/978-3-030-19562-5_20]
36. [36] S. Wael Fujo, S. Subramanian, and M. Ahmad Khder, "Customer Churn Prediction in Telecommunication Industry Using Deep Learning," Information Sciences Letters, vol. 11, no. 1, p. 24, 2022. [DOI:10.18576/isl/110120]
37. [37] I. V. Pustokhina, D. A. Pustokhin, P. T. Nguyen, M. Elhoseny, and K. Shankar, "Multi-objective rain optimization algorithm with WELM model for customer churn prediction in telecommunication sector," Complex & Intelligent Systems, pp. 1-13, 2021. [DOI:10.1007/s40747-021-00353-6]
38. [38] A. De Caigny, K. Coussement, and K. W. De Bock, "A new hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees," European Journal of Operational Research, vol. 269, no. 2, pp. 760-772, 2018. [DOI:10.1016/j.ejor.2018.02.009]
39. [39] V. Umayaparvathi and K. Iyakutti, "Automated feature selection and churn prediction using deep learning models," International Research Journal of Engineering and Technology (IRJET), vol. 4, no. 3, pp. 1846-1854, 2017.
40. [40] U. Ahmed, A. Khan, S. H. Khan, A. Basit, I. U. Haq, and Y. S. Lee, "Transfer learning and meta classification based deep churn prediction system for telecom industry," arXiv preprint arXiv:1901.06091, 2019.
41. [41] A. Idris, A. Khan, and Y. S. Lee, "Intelligent churn prediction in telecom: employing mRMR feature selection and RotBoost based ensemble classification," Applied intelligence, vol. 39, no. 3, pp. 659-672, 2013. [DOI:10.1007/s10489-013-0440-x]
42. [42] W. Verbeke, K. Dejaeger, D. Martens, J. Hur, and B. Baesens, "New insights into churn prediction in the telecommunication sector: A profit driven data mining approach," European journal of operational research, vol. 218, no. 1, pp. 211-229, 2012. [DOI:10.1016/j.ejor.2011.09.031]
43. [43] Y. Xie, X. Li, E. Ngai, and W. Ying, "Customer churn prediction using improved balanced random forests," Expert Systems with Applications, vol. 36, no. 3, pp. 5445-5449, 2009. [DOI:10.1016/j.eswa.2008.06.121]
44. [44] S. A. Qureshi, A. S. Rehman, A. M. Qamar, A. Kamal, and A. Rehman, "Telecommunication subscribers' churn prediction model using machine learning," in Eighth international conference on digital information management (ICDIM 2013), 2013, pp. 131-136: IEEE. [DOI:10.1109/ICDIM.2013.6693977]
45. [45] N. V. Chawla, "Data mining for imbalanced datasets: An overview," Data mining and knowledge discovery handbook, pp. 875-886, 2009. [DOI:10.1007/978-0-387-09823-4_45]
46. [46] Q. Gu, Z. Li, and J. Han, "Generalized fisher score for feature selection," arXiv preprint arXiv:1202.3725, 2012.
47. [47] H. Emami, "Stock exchange trading optimization algorithm: a human-inspired method for global optimization," The Journal of Supercomputing, vol. 78, no. 2, pp. 2125-2174, 2022. [DOI:10.1007/s11227-021-03943-w] [PMID] []

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این تارنما متعلق به فصل‌نامة علمی - پژوهشی پردازش علائم و داده‌ها است.