1. 1] H. A. Rahmani, M. Aliannejadi, S. Ahmadian, M. Baratchi, M. Afsharchi, and F. Crestani, "LGLMF: local geographical based logistic matrix factorization model for POI recommendation, " in AIRS 2019: Information Retrieval Technology, 2019, pp. 66-78. [
DOI:10.1007/978-3-030-42835-8_7]
2. [2] P. Moradi, F. Rezaimehr, S. Ahmadian, and M. Jalili, "A trust-aware recommender algorithm based on users overlapping community structure, " in 2016 sixteenth international conference on advances in ICT for emerging regions (ICTer), 2016, pp. 162-167. [
DOI:10.1109/ICTER.2016.7829914]
3. [3] H. Xia, X. Wei, W. An, Z. J. Zhang, and Z. Sun, "Design of electronic-commerce recommendation systems based on outlier mining, " Electronic Markets, vol. 31, pp. 295-311, 2021. [
DOI:10.1007/s12525-020-00435-2]
4. [4] G. Wei, Q. Wu, and M. Zhou, "A hybrid probabilistic multiobjective evolutionary algorithm for commercial recommendation systems, " IEEE Transactions on Computational Social Systems, vol. 8, pp. 589-598, 2021. [
DOI:10.1109/TCSS.2021.3055823]
5. [5] D. Wang, Y. Yih, and M. Ventresca, "Improving neighbor-based collaborative filtering by using a hybrid similarity measurement, " Expert Systems with Applications, vol. 160, p. 113651, 2020. [
DOI:10.1016/j.eswa.2020.113651]
6. [6] T. Qu, W. Wan, and S. Wang, "Visual content-enhanced sequential recommendation with feature-level attention, " Neurocomputing, vol. 443, pp. 262-271, 2021. [
DOI:10.1016/j.neucom.2021.02.037]
7. [7] H. Li and D. Han, "A time-aware hybrid recommendation scheme combining content-based and collaborative filtering, " Frontiers of Computer Science, vol. 15, p. 154613 2021. [
DOI:10.1007/s11704-020-0028-7]
8. [8] P. Moradi, S. Ahmadian, and F. Akhlaghian, "An effective trust-based recommendation method using a novel graph clustering algorithm, " Physica A: Statistical mechanics and its applications, vol. 436, pp. 462-481, 2015. [
DOI:10.1016/j.physa.2015.05.008]
9. [9] F. Rezaeimehr, P. Moradi, S. Ahmadian, N. N. Qader, and M. Jalili, "TCARS: Time-and community-aware recommendation system, " Future Generation Computer Systems, vol. 78, pp. 419-429, 2018. [
DOI:10.1016/j.future.2017.04.003]
10. [10] X. Yuan, L. Han, S. Qian, L. Zhu, J. Zhu, and H. Yan, "Preliminary data-based matrix factorization approach for recommendation, " Information Processing & Management, vol. 58, p. 102384, 2021. [
DOI:10.1016/j.ipm.2020.102384]
11. [11] S. Ahmadian, M. Meghdadi, and M. Afsharchi, "Incorporating reliable virtual ratings into social recommendation systems, " Applied Intelligence, vol. 48, pp. 4448-4469, 2018. [
DOI:10.1007/s10489-018-1219-x]
12. [12] S. Ahmadian, M. Afsharchi, and M. Meghdadi, "An effective social recommendation method based on user reputation model and rating profile enhancement, " Journal of Information Science, vol. 45, pp. 607-642, 2019. [
DOI:10.1177/0165551518808191]
13. [13] F. Tahmasebi, M. Meghdadi, S. Ahmadian, and K. Valiallahi, "A hybrid recommendation system based on profile expansion technique to alleviate cold start problem, " Multimedia Tools and Applications, vol. 80, pp. 2339-2354, 2021. [
DOI:10.1007/s11042-020-09768-8]
14. [14] S. Ahmadian, M. Afsharchi, and M. Meghdadi, "A novel approach based on multi-view reliability measures to alleviate data sparsity in recommender systems, " Multimedia tools and applications, vol. 78, pp. 17763-17798, 2019. [
DOI:10.1007/s11042-018-7079-x]
15. [15] S. Ahmadian, N. Joorabloo, M. Jalili, and M. Ahmadian, "Alleviating data sparsity problem in time-aware recommender systems using a reliable rating profile enrichment approach, " Expert Systems with Applications, p. 115849, 2021. [
DOI:10.1016/j.eswa.2021.115849]
16. [16] S. Ahmadian, P. Moradi, and F. Akhlaghian, "An improved model of trust-aware recommender systems using reliability measurements, " in 2014 6th Conference on Information and Knowledge Technology (IKT), 2014, pp. 98-103. [
DOI:10.1109/IKT.2014.7030341]
17. [17] S. Ahmadian, N. Joorabloo, M. Jalili, M. Meghdadi, M. Afsharchi, and Y. Ren, "A temporal clustering approach for social recommender systems, " in 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), 2018, pp. 1139-1144. [
DOI:10.1109/ASONAM.2018.8508723]
18. [18] B. Chen, Y. Ding, X. Xin, Y. Li, Y. Wang, and D. Wang, "AIRec: Attentive intersection model for tag-aware recommendation, " Neurocomputing, vol. 421, pp. 105-114, 2021. [
DOI:10.1016/j.neucom.2020.08.018]
19. [19] Z. Y. Khan, Z. Niu, A. S. Nyamawe, and I. Haq, "A deep hybrid model for recommendation by jointly leveraging ratings, reviews and metadata information, " Engineering Applications of Artificial Intelligence, vol. 97, p. 104066, 2021. [
DOI:10.1016/j.engappai.2020.104066]
20. [20] A. Breitfuss, K. Errou, A. Kurteva, and A. Fensel, "Representing emotions with knowledge graphs for movie recommendations, " Future Generation Computer Systems, vol. 125, pp. 715-725, 2021. [
DOI:10.1016/j.future.2021.06.001]
21. [21] U. Thakker, R. Patel, and M. Shah, "A comprehensive analysis on movie recommendation system employing collaborative filtering, " Multimedia Tools and Applications, vol. 80, pp. 28647-28672, 2021. [
DOI:10.1007/s11042-021-10965-2]
22. [22] B. Walek and V. Fojtik, "A hybrid recommender system for recommending relevant movies using an expert system, " Expert Systems with Applications, vol. 158, p. 113452, 2020. [
DOI:10.1016/j.eswa.2020.113452]
23. [23] H. Tahmasebi, R. Ravanmehr, and R. Mohamadrezaei, "Social movie recommender system based on deep autoencoder network using Twitter data, " Neural Computing and Applications, vol. 33, pp. 1607-1623, 2021. [
DOI:10.1007/s00521-020-05085-1]
24. [24] R. Katarya and O. P. Verma, "An effective collaborative movie recommender system with cuckoo search, " Egyptian Informatics Journal, vol. 18, pp. 105-112, 2017. [
DOI:10.1016/j.eij.2016.10.002]
25. [25] K. Indira and M. K. Kavithadevi, "Efficient machine learning model for movie recommender systems using multi-cloud environment, " Mobile Networks and Applications, vol. 24, pp. 1872-1882, 2019. [
DOI:10.1007/s11036-019-01387-4]
26. [26] M. Gan and H. Cui, "Exploring user movie interest space: A deep learning based dynamic recommendation model, " Expert Systems with Applications, vol. 173, p. 114695, 2021. [
DOI:10.1016/j.eswa.2021.114695]
27. [27] Y. L. Chen, Y. H. Yeh, and M. R. Ma, "A movie recommendation method based on users' positive and negative profiles, " Information Processing & Management, vol. 58, p. 102531, 2021. [
DOI:10.1016/j.ipm.2021.102531]
28. [28] A. Roy and S. A. Ludwig, "Genre based hybrid filtering for movie recommendation engine, " Journal of Intelligent Information Systems, vol. 56, pp. 485-507, 2021. [
DOI:10.1007/s10844-021-00637-w]
29. [29] F. Ortega, R. L. Cabrera, Á. G. Prieto, and J. Bobadilla, "Providing reliability in recommender systems through Bernoulli Matrix Factorization, " Information Sciences, vol. 553, pp. 110-128, 2021. [
DOI:10.1016/j.ins.2020.12.001]
30. [30] P. Moradi and S. Ahmadian, "A reliability-based recommendation method to improve trust-aware recommender systems, " Expert Systems with Applications, vol. 42, pp. 7386-7398, 2015. [
DOI:10.1016/j.eswa.2015.05.027]
31. [31] L. Huang, H. Ma, X. He, and L. Chang, "Multi-affect (ed): improving recommendation with similarity-enhanced user reliability and influence propagation, " Frontiers of Computer Science, vol. 15, p. 155331, 2021. [
DOI:10.1007/s11704-020-9511-4]
32. [32] C. A. Zayani, L. Ghorbel, I. Amous, M. Mezghanni, A. Péninou, and F. Sèdes, "Profile reliability to improve recommendation in social-learning context, " Online Information Review, vol. 44, pp. 433-454, 2020. [
DOI:10.1108/OIR-02-2017-0068]
33. [33] Y. Jiang, H. Ma, Y. Liu, and Z. Li, "Exploring user trust and reliability for recommendation: A hypergraph ranking approach, " in International Conference on Neural Information Processing, 2020, pp. 333-344. [
DOI:10.1007/978-3-030-63833-7_28]
34. [34] S. Alonso, J. Bobadilla, F. Ortega, and R. Moya, "Robust model-based reliability approach to tackle shilling attacks in collaborative filtering recommender systems, " IEEE Access, vol. 7, pp. 41782-41798, 2019. [
DOI:10.1109/ACCESS.2019.2905862]
35. [35] H. Xie and J. C. S. Lui, "Mathematical modeling and analysis of product rating with partial information, " ACM Transactions on Knowledge Discovery from Data, vol. 9, pp. 1-33, 2015. [
DOI:10.1145/2700386]
36. [36] C. M. Bishop, Pattern recognition and machine learning: Springer-Verlag New York, 2006.
37. [37] J. Matoussek and J. Vondrak, The Probabilistic Method: Charles University, 2001.
38. [38] R. Salakhutdinov and A. Mnih, "Probabilistic matrix factorization, " in NIPS'07: Proceedings of the 20th International Conference on Neural Information Processing Systems, 2007, pp. 1257-1264.
39. [39] N. D. Lawrence and R. Urtasun, "Non-linear matrix factorization with Gaussian processes, " in ICML '09 Proceedings of the 26th Annual International Conference on Machine Learning, Montreal, Quebec, Canada, 2009, pp. 601-608. [
DOI:10.1145/1553374.1553452]
40. [40] N. Polatidis and C. K. Georgiadis, "A multi-level collaborative filtering method that improves recommendations, " Expert Systems with Applications, vol. 48, pp. 100-110, 2016. [
DOI:10.1016/j.eswa.2015.11.023]
41. [41] V. Formoso, D. Fernández, F. Cacheda, and V. Carneiro, "Using profile expansion techniques to alleviate the new user problem, " Information Processing and Management, vol. 49, pp. 659-672, 2013. [
DOI:10.1016/j.ipm.2012.07.005]
42. [42] L. Huang, W. Tan, and Y. Sun, "Collaborative recommendation algorithm based on probabilistic matrix factorization in probabilistic latent semantic analysis, " Multimedia Tools and Applications, vol. 78, pp. 8711-8722, 2019. [
DOI:10.1007/s11042-018-6232-x]
43. [43] S. Natarajan, S. Vairavasundaram, S. Natarajan, and A. H. Gandomi, "Resolving data sparsity and cold start problem in collaborative filtering recommender system using Linked Open Data, " Expert Systems with Applications, vol. 149, p. 113248, 2020. [
DOI:10.1016/j.eswa.2020.113248]
44. [44] T. Widiyaningtyas, I. Hidayah, and T. B. Adji, "User profile correlation-based similarity (UPCSim) algorithm in movie recommendation system, " Journal of Big Data, vol. 8, pp. 1-21, 2021. [
DOI:10.1186/s40537-021-00425-x]
45. [45] ربی انگورانی، مهرداد، "ارائه راهکاری کارآمد برای سامانههای توصیهگر با حفظ تنوع آرا"،1396، پایاننامه دانشگاه شیراز، کتابخانه دانشگاه شیراز.
46. [46] Geetha, G., et al. "A hybrid approach using collaborative filtering and content based filtering for recommender system." Journal of Physics: Conference Series. Vol. 1000. No. 1. IOP Publishing, 2018. [
DOI:10.1088/1742-6596/1000/1/012101]
47. [47] عباسی مقدم، سمانه، "روشی برای بهبود سامانههای توصیهگر بر اساس شبکه اعتماد "،1387، پایان¬نامه دانشگاه صنعتی شریف، کتابخانه دانشگاه صنعتی شریف.
48. [48] Alhijawi, Bushra, and Yousef Kilani. "A collaborative filtering recommender system using genetic algorithm." Information Processing & Management 57.6 (2020): 102310. [
DOI:10.1016/j.ipm.2020.102310]
49. [49] گوهری، فائزه سادات، "بهبود سامانههای توصیهگر پالایش جمعی با بهره¬گیری از شبکه اعتماد ضمنی "،1395، پایان¬نامه دانشگاه شهید بهشتی، کتابخانه دانشگاه شهید بهشتی.
50. [50] Rajendran, Dixon Prem Daniel, and Rangaraja P. Sundarraj. "Using topic models with browsing history in hybrid collaborative filtering recommender system: Experiments with user ratings." International Journal of Information Management Data Insights 1.2 (2021): 100027. [
DOI:10.1016/j.jjimei.2021.100027]
51. [51] بلوکی، امیدرضا، "شخصی سازی فرآیند آموزشی بهکمک سامانهای توصیه گر مبتنی بر مدل احساسی کاربر"،1399، پایان نامه دانشگاه صنعتی امیرکبیر، کتابخانه دانشگاه صنعتی امیرکبیر.
52. [52] مهدوی، مهرگان، "استفادهی موثر از سامانه های توصیهگر جهت ارائة توصیه¬های شخصی¬سازی شده "،1399، پایان¬نامه دانشگاه فردوسی مشهد، کتابخانه دانشگاه فردوسی مشهد.