1. Ahmad, Amir, and Shehroz S. Khan. "Survey of state-of-the-art mixed data clustering algorithms." Ieee Access 7 (2019): 31883-31902. [
DOI:10.1109/ACCESS.2019.2903568]
2. Ahmad, Amir, and Shehroz S. Khan. "initKmix-A novel initial partition generation algorithm for clustering mixed data using k-means-based clustering." Expert Systems with Applications 167 (2021): 114149. [
DOI:10.1016/j.eswa.2020.114149]
3. Behzadi, Sahar, et al. "Clustering of mixed-type data considering concept hierarchies: problem specification and algorithm." International Journal of Data Science and Analytics 10.3 (2020): 233-248. [
DOI:10.1007/s41060-020-00216-2]
4. Kumar, Pradeep, and Anita Kanavalli. "A Similarity based K-Means Clustering Technique for Categorical Data in Data Mining Application." International Journal of Intelligent Engineering and Systems 14.2 (2021): 43-51. [
DOI:10.22266/ijies2021.0430.05]
5. Ji, Jinchao, et al. "A Multi-View Clustering Algorithm for Mixed Numeric and Categorical Data." IEEE Access 9 (2021): 24913-24924. [
DOI:10.1109/ACCESS.2021.3057113]
6. Sangam, Ravi Sankar, and Hari Om. "An equi-biased k-prototypes algorithm for clustering mixed-type data." Sādhanā 43.3 (2018): 1-12. [
DOI:10.1007/s12046-018-0823-0]
7. Yuan, Fang, Youlong Yang, and Tiantian Yuan. "A dissimilarity measure for mixed nominal and ordinal attribute data in k-Modes algorithm." Applied Intelligence 50.5 (2020): 1498-1509 [
DOI:10.1007/s10489-019-01583-5]
8. Jia, Ziqi, and Ling Song. "Weighted k-Prototypes Clustering Algorithm Based on the Hybrid Dissimilarity Coefficient." Mathematical Problems in Engineering 2020 (2020). [
DOI:10.1155/2020/5143797]
9. Jia, Hong, Yiu-ming Cheung, and Jiming Liu. "A new distance metric for unsupervised learning of categorical data." IEEE transactions on neural networks and learning systems 27.5 (2015): 1065-1079. [
DOI:10.1109/TNNLS.2015.2436432]
10. Ji, Jinchao, et al. "Clustering mixed numeric and categorical data with artificial bee colony strategy." Journal of Intelligent & Fuzzy Systems 36.2 (2019): 1521-1530. [
DOI:10.3233/JIFS-18146]
11. Skabar, Andrew. "Clustering Mixed-Attribute Data using Random Walk." Procedia Computer Science 108 (2017): 988-997. [
DOI:10.1016/j.procs.2017.05.083]
12. Du, Mingjing, Shifei Ding, and Yu Xue. "A novel density peaks clustering algorithm for mixed data." Pattern Recognition Letters 97 (2017): 46-53 [
DOI:10.1016/j.patrec.2017.07.001]
13. Qian, Yuhua, et al. "Space structure and clustering of categorical data." IEEE transactions on neural networks and learning systems 27.10 (2015): 2047-2059. [
DOI:10.1109/TNNLS.2015.2451151]
14. dos Santos, Tiago RL, and Luis E. Zárate. "Categorical data clustering: What similarity measure to recommend?. " Expert Systems with Applications 42.3 (2015): 1247-1260. [
DOI:10.1016/j.eswa.2014.09.012]
15. Ahmad, Amir, and Sarosh Hashmi. "K-Harmonic means type clustering algorithm for mixed datasets." Applied Soft Computing 48 (2016): 39-49. [
DOI:10.1016/j.asoc.2016.06.019]
16. Ji, Jinchao, et al. "An initialization method for clustering mixed numeric and categorical data based on the density and distance." International Journal of Pattern Recognition and Artificial Intelligence 29.07 (2015): 1550024. [
DOI:10.1142/S021800141550024X]
17. van de Velden, Michel, Alfonso Iodice D'Enza, and Angelos Markos. "Distance‐based clustering of mixed data." Wiley Interdisciplinary Reviews: Computational Statistics 11.3 (2019): e1456. [
DOI:10.1002/wics.1456]
18. Caruso, Giulia, et al. "Cluster analysis: An application to a real mixed-type data set." Models and Theories in Social Systems. Springer, Cham, 2019. 525-533. [
DOI:10.1007/978-3-030-00084-4_27]
19. Jinyin, Chen, et al. "A novel cluster center fast determination clustering algorithm." Applied Soft Computing 57 (2017): 539-555 [
DOI:10.1016/j.asoc.2017.04.031]
20. Xiong, Jing, and Hong Yu. "An adaptive three-way clustering algorithm for mixed-type data." International Symposium on Methodologies for Intelligent Systems. Springer, Cham, 2018. [
DOI:10.1007/978-3-030-01851-1_36]
21. Dinh, Duy-Tai, and Van-Nam Huynh. "k-PbC: an improved cluster center initialization for categorical data clustering." Applied Intelligence (2020): 1-23. [
DOI:10.1007/s10489-020-01677-5]
22. Hsu, Chung-Chian, and Yan-Ping Huang. "Incremental clustering of mixed data based on distance hierarchy." Expert systems with applications 35.3 (2008): 1177-1185. [
DOI:10.1016/j.eswa.2007.08.049]
23. Ahmad, Amir, and Lipika Dey. "A k-mean clustering algorithm for mixed numeric and categorical data." Data & Knowledge Engineering 63.2 (2007): 503-527. [
DOI:10.1016/j.datak.2007.03.016]
24. UCI Repository. https://archive.ics.uci.edu/ml/datasets.html. (September 6, 2021).