دوره 20، شماره 3 - ( 10-1402 )                   جلد 20 شماره 3 صفحات 140-127 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

derogarmoghadam A, Karami Molaei M R, Hassanzadeh M. Design of a filter bank-based convolutional neural network for handwritten digit images classification. JSDP 2023; 20 (3) : 9
URL: http://jsdp.rcisp.ac.ir/article-1-1320-fa.html
دروگرمقدم علی، کرمی ملایی محمدرضا، حسن زاده محمدرضا. طراحی یک شبکه عصبی کانولوشنال مبتنی بر بانک فیلتر برای طبقه بندی تصاویر اعداد دست نویس. پردازش علائم و داده‌ها. 1402; 20 (3) :127-140

URL: http://jsdp.rcisp.ac.ir/article-1-1320-fa.html


دانشگاه صنعتی نوشیروانی بابل
چکیده:   (659 مشاهده)

در سال­های اخیر شبکه­های عصبی کانولوشنال به طور فزاینده­ای در کاربردهای مختلف بینایی ماشین و به ویژه در شناسایی و طبقه­بندی خودکار تصاویر مورد استفاده قرار گرفته­اند. این نوع از شبکه­های عصبی مصنوعی با شبیه­سازی عملکرد قشر بینایی مغز قدرتمندترین ساختار را در تجزیه و تحلیل داده­های بصری دارند. اما تنوع تصاویر دیجیتال و گوناگونی محتوی و ویژگی­های آن­ها ایجاب می­کند تا برای دستیابی به کارایی بالاتر در هر مسئله­ی طبقه­بندی، شبکه­های کانولوشنال به صورت اختصاصی طراحی و پارامترهای آن­ها به دقت تنظیم شوند. در این راستا، در پژوهش حاضر ضرایبی بهینه برای فیلترهای لایه­ی کانولوشن در شروع آموزش شبکه بکار رفته تا از این طریق دقت طبقه­بندی در شبکه افزایش و زمان آموزش کاهش یابد. این کار با طراحی و بکارگیری مجموعه­ای از فیلترهای تخصصی برای لایه­ی کانولوشن در قالب یک بانک فیلتر و جایگذاری آن­ها به جای فیلترهای تصادفی انجام پذیرفته و بر روی پایگاه داده­ی تصاویر اعداد دست­نویس MNIST ارزیابی شده است. آزمایشات ما بر روی شبکه­ی کانولوشنال تک لایه با سه نوع فیلترگذاری (فیلترهای عدد ثابت، عدد تصادفی و بانک فیلتر) میانگین دقت طبقه­بندی تصاویر اعداد دست­نویس MNIST را در 50 بار آموزش شبکه به ترتیب 94/74، 47/86 و 89/91 درصد و برای شبکه­ی کانولوشنال سه لایه به ترتیب 82/88، 16/96 و 14/99 درصد نشان دادند. این نتایج نشان می­دهند که فیلترهای بکار رفته در مدل پیشنهادی در مقایسه با فیلترهای تصادفی ویژگی­های موثرتری از تصاویر را استخراج نموده و با شروع آموزش شبکه از نقطه­­ی مناسبتر، بدون افزایش هزینه­ی محاسباتی دقت طبقه­بندی را افزایش داده­اند. بنابراین می­توان نتیجه گرفت که ضرایب اولیه­ی فیلترهای لایه­ی کانولوشن بر دقت طبقه­بندی شبکه­های کانولوشنال موثر است و با بکارگیری فیلترهای موثرتر در لایه­­ی کانولوشن می­توان این شبکه­ها را خاص مسئله ساخته و از این طریق کارآیی شبکه را افزایش داد.      
 

شماره‌ی مقاله: 9
متن کامل [PDF 845 kb]   (200 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: مقالات پردازش تصویر
دریافت: 1401/4/7 | پذیرش: 1402/4/27 | انتشار: 1402/10/24 | انتشار الکترونیک: 1402/10/24

فهرست منابع
1. [1] Javidi, B., "Image recognition and classification: algorithms, systems, and applications". 2002: CRC press.
2. [2] Lu D, Weng Q. "A survey of image classification methods and techniques for improving classification performance". International journal of Remote sensing. 2007;28(5):823-70. [DOI:10.1080/01431160600746456]
3. [3] Nath, S.S., et al. "A survey of image classification methods and techniques". International conference on control, instrumentation, communication and computational technologies (ICCICCT). 2014, IEEE.
4. [4] Dat, P.K.K.O., "Image Classification Difficulties".
5. [5] Jain, G. and J. Ko, "Handwritten digits recognition". Multimedia Systems, Project Report, University of Toronto, 2008: p. 1-3.
6. [6] Jain, A.K., R.P.W. Duin, and J. Mao, "Statistical pattern recognition: A review". IEEE Transactions on pattern analysis and machine intelligence, 2000. 22(1): p. 4-37. [DOI:10.1109/34.824819]
7. [7] Egmont-Petersen, M., D. de Ridder, and H. Handels, "Image processing with neural networks: a review". Pattern recognition, 2002. 35(10): p. 2279-2301. [DOI:10.1016/S0031-3203(01)00178-9]
8. [8] Ghosh, M.M.A. and A.Y. Maghari. "A comparative study on handwriting digit recognition using neural networks". in 2017 international conference on promising electronic technologies (ICPET). 2017. IEEE.
9. [9] Bala, R. and D. Kumar, "Classification using ANN: A review". Int. J. Comput. Intell. Res, 2017. 13(7): p. 1811-1820.
10. [10] Bhatnagar, S., D. Ghosal, and M.H. Kolekar. "Classification of fashion article images using convolutional neural networks". in 2017 Fourth International Conference on Image Information Processing (ICIIP). 2017 IEEE.
11. [11] Chen, F., et al., "Assessing four neural networks on handwritten digit recognition dataset (MNIST)". arXiv preprint arXiv:1811.08278, 2018.
12. [12] Hubel, D.H. and T.N. Wiesel, "Receptive fields, binocular interaction and functional architecture in the cat's visual cortex". The Journal of physiology, 1962. 160(1): p. 106.
13. [13] Fukushima, K., "Neural network model for selective attention in visual pattern recognition and associative recall". Applied Optics, 1987. 26(23): p. 4985-4992. [DOI:10.1364/AO.26.004985] [PMID]
14. [14] Momeny M, Sarram M A, Latif A, Sheikhpour R. A Convolutional Neural Network based on Adaptive Pooling for Classification of Noisy Images. JSDP 2021; 17 (4) :139-154. [DOI:10.29252/jsdp.17.4.139]
15. [15] Traore, B.B., B. Kamsu-Foguem, and F. Tangara, "Deep convolution neural network for image recognition". Ecological Informatics, 2018. 48: p. 257-268. [DOI:10.1016/j.ecoinf.2018.10.002]
16. [16] Duan, M., G. Wang, and C. Niu, "Method of small sample size image recognition based on convolution neural network". Computer Engineering and Design, 2018. 39(1): p. 224-229.
17. [17] Zhou, X., et al. "Application of deep learning in object detection". in 2017 IEEE/ACIS 16th International Conference on Computer and Information Science (ICIS). 2017. IEEE.
18. [18] Ren, S., et al., "Faster r-cnn: Towards real-time object detection with region proposal networks". Advances in neural information processing systems, 2015. 28.
19. [19] Liu, Z., et al., "Salient object detection for RGB-D image by single stream recurrent convolution neural network". Neurocomputing, 2019. 363: p. 46-57. https://doi.org/10.1016/j.neucom.2019.07.012 [DOI:10.1016/j.neucom.2019.01.085]
20. [20] Lang, R., L. Zhao, and K. Jia. "Brain tumor image segmentation based on convolution neural network". in 2016 9th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI). 2016. IEEE.
21. [21] Sultana, F., A. Sufian, and P. Dutta, "Evolution of image segmentation using deep convolutional neural network: a survey". Knowledge-Based Systems, 2020. 201: p. 106062.
22. [22] Al-Saffar, A.A.M., H. Tao, and M.A. Talab. "Review of deep convolution neural network in image classification". in 2017 International conference on radar, antenna, microwave, electronics, and telecommunications (ICRAMET). 2017. IEEE.
23. [23] LeCun, Y., et al., "Gradient-based learning applied to document recognition". Proceedings of the IEEE, 1998. 86(11): p. 2278-2324. [DOI:10.1109/5.726791]
24. [24] Simard, P.Y., D. Steinkraus, and J.C. Platt. "Best practices for convolutional neural networks applied to visual document analysis". in Icdar. 2003.
25. [25] Nielsen, M.A., "Neural networks and deep learning". Vol. 25. 2015: Determination press San Francisco, CA, USA.
26. [26] Wan, L., et al. "Regularization of neural networks using dropconnect". in International conference on machine learning. 2013. PMLR.
27. [27] Tabik, S., et al., "A snapshot of image pre-processing for convolutional neural networks: case study of MNIST". 2017.
28. [28] Ahlawat, S., et al., "Improved handwritten digit recognition using convolutional neural networks (CNN)". Sensors, 2020. 20(12): p. 3344.
29. [29] Ahlawat, S. and A. Choudhary, "Hybrid CNN-SVM classifier for handwritten digit recognition". Procedia Computer Science, 2020. 167: p.2554-2560. [DOI:10.1016/j.procs.2020.03.309]
30. [30] Ali, S., et al., "An effective and improved CNN-ELM classifier for handwritten digits recognition and classification". Symmetry, 2020. 12(10): p. 1742.
31. [31] Calderon, A., S. Roa, and J. Victorino, "Handwritten digit recognition using convolutional neural networks and gabor filters". Proc. Int. Congr. Comput. Intell, 2003: p. 1-9.
32. [32] Le, Q.V., et al. "On optimization methods for deep learning". in ICML. 2011.
33. [33] LeCun, Y., C. Cortes, and C.J. Burges, "The MNIST database of handwritten digits". Website. 1998.
34. [34] Yamashita, R., et al., "Convolutional neural networks: an overview and application in radiology". Insights into imaging, 2018. 9(4): p. 611-629. [DOI:10.1007/s13244-018-0639-9] [PMID] []
35. [35] Cui, H. and J. Bai, "A new hyperparameters optimization method for convolutional neural networks". Pattern Recognition Letters, 2019. 125: p. 828-834. [DOI:10.1016/j.patrec.2019.02.009]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این تارنما متعلق به فصل‌نامة علمی - پژوهشی پردازش علائم و داده‌ها است.