دوره 20، شماره 2 - ( 6-1402 )                   جلد 20 شماره 2 صفحات 174-163 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Miri F, Hosseini S, Shaghaghi Kandovan R. Feature fusion by neural network classification in remotely sensed hyperspectral images. JSDP 2023; 20 (2) : 10
URL: http://jsdp.rcisp.ac.ir/article-1-1317-fa.html
میری فاطمه سادات، حسینی سید ابوالفضل، شقاقی کندوان رامین. ادغام ویژگی های طیفی و مکانی تصاویر ابر طیفی به کمک طبقه بند شبکه عصبی. پردازش علائم و داده‌ها. 1402; 20 (2) :163-174

URL: http://jsdp.rcisp.ac.ir/article-1-1317-fa.html


دانشکده برق و کامپیوتر
چکیده:   (541 مشاهده)
در تصاویر ابرطیفی که توسط سنجنده های از راه دور بدست می آیند، می توان تفکیک بین کلاس ها را دقیق تر و با جزئیات بیشتر بدست آورد. از آنجایی که ابعاد بالای داده ابرطیفی و تعداد کم نمونه های آموزشی، طبقه بندی تصاویر ابرطیفی را مشکل می سازد. به دنبال تکنیک هایی هستیم که در هنگام کمبود تعداد نمونه های آموزشی دقت طبقه بندی قابل قبولی داشته باشد. لذا بکارگیری تکنیک هایی که علاو  بر کاهش تعداد نمونه های آموزشی، دقت طبقه بندی را  بالاتر ببرد حائز اهمیت می گردد. این مقاله از روش طبقه بند شبکه عصبی در طبقه بندی تصاویر ابرطیفی به کمک ادغام ویژگی طیفی و مکانی در دو روش پشته و روش مبتنی بر گراف دودویی بهره گرفته است. علاوه بر روش متداول پشته یاstack ،استفاده از روش گراف دودویی ناحیه ای به منظور ادغام مناسب اطلاعات طیفی و مکانی یک روش مطلوب برای استفاده همزمان از اطلاعات طیفی در کنار اطلاعات  مکانی (Feature Fusion)  در طبقه بندی تصویر ابرطیفی می باشد. در هریک ازاین روش ها طبقه  بند شبکه عصبی روی ویژگیهای طیفی و  مکانی به صورت مجزاو ادغام شده بکار گرفته شده است و سپس با عملکرد طبقه بند ماشین بردار پشتیبان در شرایط مشابه مقایسه شده است. نتایج طبقه بندی بیانگر برتری طبقه بند شبکه عصبی است.

 
شماره‌ی مقاله: 10
متن کامل [PDF 1013 kb]   (114 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: مقالات پردازش داده‌های رقمی
دریافت: 1401/3/22 | پذیرش: 1402/4/26 | انتشار: 1402/7/30 | انتشار الکترونیک: 1402/7/30

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این تارنما متعلق به فصل‌نامة علمی - پژوهشی پردازش علائم و داده‌ها است.