1. [1] C. Sohrabi et al., "World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19)," International Journal of Surgery, vol. 76, pp. 71-76, 2020/04/01/ 2020, doi:
https://doi.org/10.1016/j.ijsu.2020.02.034 [
DOI:10.1016/j.ijsu.2020.02.034.] [
PMID] [
]
2. [2] C.-C. Lai, T.-P. Shih, W.-C. Ko, H.-J. Tang, and P.-R. Hsueh, "Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges," International Journal of Antimicrobial Agents, vol. 55, no. 3, p. 105924, 2020/03/01/ 2020, doi:
https://doi.org/10.1016/j.ijantimicag.2020.105924 [
DOI:10.1016/j.ijantimicag.2020.105924.] [
PMID] [
]
3. [3] H. A. Rothan and S. N. Byrareddy, "The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak," Journal of Autoimmunity, vol. 109, p. 102433, 2020/05/01/ 2020, doi:
https://doi.org/10.1016/j.jaut.2020.102433 [
DOI:10.1016/j.jaut.2020.102433.] [
PMID] [
]
4. [4] R. M. Pereira, D. Bertolini, L. O. Teixeira, C. N. Silla, and Y. M. G. Costa, "COVID-19 identification in chest X-ray images on flat and hierarchical classification scenarios," Computer Methods and Programs in Biomedicine, vol. 194, p. 105532, 2020/10/01/ 2020, doi:
https://doi.org/10.1016/j.cmpb.2020.105532 [
DOI:10.1016/j.cmpb.2020.105532.] [
PMID] [
]
5. [5] T. Franquet, "Imaging of Pulmonary Viral Pneumonia," Radiology, vol. 260, no. 1, pp. 18-39, 2011, doi: 10.1148/radiol.11092149. [
DOI:10.1148/radiol.11092149] [
PMID]
6. [6] S. Latif et al., "Leveraging Data Science to Combat COVID-19: A Comprehensive Review," IEEE Transactions on Artificial Intelligence, vol. 1, no. 1, pp. 85-103, 2020, doi: 10.1109/TAI.2020.3020521. [
DOI:10.1109/TAI.2020.3020521] [
PMID] [
]
7. [7] G. D. Rubin et al., "The Role of Chest Imaging in Patient Management During the COVID-19 Pandemic: A Multinational Consensus Statement From the Fleischner Society," Chest, vol. 158, no. 1, pp. 106-116, 2020/07/01/ 2020, doi:
https://doi.org/10.1016/j.chest.2020.04.003 [
DOI:10.1016/j.chest.2020.04.003.] [
PMID] [
]
8. [8] C. Long et al., "Diagnosis of the Coronavirus disease (COVID-19): rRT-PCR or CT?," European Journal of Radiology, vol. 126, p. 108961, 2020/05/01/ 2020, doi:
https://doi.org/10.1016/j.ejrad.2020.108961 [
DOI:10.1016/j.ejrad.2020.108961.] [
PMID] [
]
9. [9] F. Chollet, "Xception: Deep learning with depthwise separable convolutions," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 1251-1258.
10. [10] A. Shoeibi et al., "Automated detection and forecasting of covid-19 using deep learning techniques: A review," arXiv preprint arXiv:2007.10785, 2020.
11. [11] R. Karthik, R. Menaka, M. Hariharan, and G. S. Kathiresan, "AI for COVID-19 Detection from Radiographs: Incisive Analysis of State of the Art Techniques, Key Challenges and Future Directions," IRBM, 2021/07/26/ 2021, doi:
https://doi.org/10.1016/j.irbm.2021.07.002 [
DOI:10.1016/j.irbm.2021.07.002.] [
PMID] [
]
12. [12] M. S. Yang, "A survey of fuzzy clustering," Mathematical and Computer Modelling, vol. 18, no. 11, pp. 1-16, 1993/12/01/ 1993, doi:
https://doi.org/10.1016/0895-7177(93)90202-A [
DOI:10.1016/0895-7177(93)90202-A.]
13. [13] V. Badrinarayanan, A. Kendall, and R. Cipolla, "SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 12, pp. 2481-2495, 2017, doi: 10.1109/TPAMI.2016.2644615. [
DOI:10.1109/TPAMI.2016.2644615] [
PMID]
14. [14] S. H. Gao, M. M. Cheng, K. Zhao, X. Y. Zhang, M. H. Yang, and P. Torr, "Res2Net: A New Multi-Scale Backbone Architecture," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 43, no. 2, pp. 652-662, 2021, doi: 10.1109/TPAMI.2019.2938758. [
DOI:10.1109/TPAMI.2019.2938758] [
PMID]
15. [15] O. Ronneberger, P. Fischer, and T. Brox, "U-Net: Convolutional Networks for Biomedical Image Segmentation," Cham, 2015: Springer International Publishing, in Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015, pp. 234-241.
16. [16] K. O Shea and R. Nash, "An Introduction to Convolutional Neural Networks," ArXiv, vol. abs/1511.08458, 2015.
17. [17] Z.-W. Yuan and J. Zhang, Feature extraction and image retrieval based on AlexNet (Eighth International Conference on Digital Image Processing (ICDIP 2016)). SPIE, 2016.
18. [18] S. Tammina, "Transfer learning using VGG-16 with deep convolutional neural network for classifying images," International Journal of Scientific and Research Publications, vol. 9, no. 10, pp. 143-150, 2019.
19. [19] P. Aswathy, Siddhartha, and D. Mishra, "Deep GoogLeNet Features for Visual Object Tracking," in 2018 IEEE 13th International Conference on Industrial and Information Systems (ICIIS), 1-2 Dec. 2018 2018, pp. 60-66, doi: 10.1109/ICIINFS.2018.8721317. [
DOI:10.1109/ICIINFS.2018.8721317] [
PMID]
20. [20] K. Zhang, Y. Guo, X. Wang, J. Yuan, and Q. Ding, "Multiple Feature Reweight DenseNet for Image Classification," IEEE Access, vol. 7, pp. 9872-9880, 2019, doi: 10.1109/ACCESS.2018.2890127. [
DOI:10.1109/ACCESS.2018.2890127]
21. [21] W. Wang, Y. Li, T. Zou, X. Wang, J. You, and Y. Luo, "A Novel Image Classification Approach via Dense-MobileNet Models," Mobile Information Systems, vol. 2020, p. 7602384, 2020/01/06 2020, doi: 10.1155/2020/7602384. [
DOI:10.1155/2020/7602384]
22. [22] F. Ucar and D. Korkmaz, "COVIDiagnosis-Net: Deep Bayes-SqueezeNet based diagnosis of the coronavirus disease 2019 (COVID-19) from X-ray images," Medical Hypotheses, vol. 140, p. 109761, 2020/07/01/ 2020, doi:
https://doi.org/10.1016/j.mehy.2020.109761 [
DOI:10.1016/j.mehy.2020.109761.] [
PMID] [
]
23. [23] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, "Rethinking the inception architecture for computer vision," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 2818-2826.
24. [24] A. Mahajan and S. Chaudhary, "Categorical Image Classification Based On Representational Deep Network (RESNET)," in 2019 3rd International conference on Electronics, Communication and Aerospace Technology (ICECA), 12-14 June 2019 2019, pp. 327-330, doi: 10.1109/ICECA.2019.8822133. [
DOI:10.1109/ICECA.2019.8822133]
25. [25] Z. Dong and S. Lin, "Research on image classification based on Capsnet," in 2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), 20-22 Dec. 2019 2019, vol. 1, pp. 1023-1026, doi: 10.1109/IAEAC47372.2019.8997743. [
DOI:10.1109/IAEAC47372.2019.8997743] [
PMID] [
]
26. [26] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, "Shufflenet v2: Practical guidelines for efficient cnn architecture design," in Proceedings of the European conference on computer vision (ECCV), 2018, pp. 116-131.
27. [27] K. El Asnaoui and Y. Chawki, "Using X-ray images and deep learning for automated detection of coronavirus disease," Journal of Biomolecular Structure and Dynamics, pp. 1-12, 2020, doi: 10.1080/07391102.2020.1767212. [
DOI:10.1080/07391102.2020.1767212] [
PMID] [
]
28. [28] M. Loey, F. Smarandache, and N. E. M. Khalifa, "Within the Lack of Chest COVID-19 X-ray Dataset: A Novel Detection Model Based on GAN and Deep Transfer Learning," Symmetry, vol. 12, no. 4, p. 651, 2020. [Online]. Available: https://www.mdpi.com/2073-8994/12/4/651.
29. [29] S. Asif, W. Yi, H. Jin, Y. Tao, and S. Jinhai, Classification of COVID-19 from Chest X-ray images using Deep Convolutional Neural Networks. 2020.
30. [30] M. Rahimzadeh and A. Attar, "A modified deep convolutional neural network for detecting COVID-19 and pneumonia from chest X-ray images based on the concatenation of Xception and ResNet50V2," Informatics in Medicine Unlocked, vol. 19, p. 100360, 2020/01/01/ 2020, doi:
https://doi.org/10.1016/j.imu.2020.100360 [
DOI:10.1016/j.imu.2020.100360.] [
PMID] [
]
31. [31] K. Medhi, M. Jamil, and M. I. Hussain, "Automatic Detection of COVID-19 Infection from Chest X-ray using Deep Learning," medRxiv, p. 2020.05.10.20097063, 2020, doi: 10.1101/2020.05.10.20097063. [
DOI:10.1101/2020.05.10.20097063]
32. [32] T. Ozturk, M. Talo, E. A. Yildirim, U. B. Baloglu, O. Yildirim, and U. Rajendra Acharya, "Automated detection of COVID-19 cases using deep neural networks with X-ray images," Computers in Biology and Medicine, vol. 121, p. 103792, 2020/06/01/ 2020, doi:
https://doi.org/10.1016/j.compbiomed.2020.103792 [
DOI:10.1016/j.compbiomed.2020.103792.] [
PMID] [
]
33. [33] I. D. Apostolopoulos and T. A. Mpesiana, "Covid-19: automatic detection from X-ray images utilizing transfer learning with convolutional neural networks," Physical and Engineering Sciences in Medicine, vol. 43, no. 2, pp. 635-640, 2020/06/01 2020, doi: 10.1007/s13246-020-00865-4. [
DOI:10.1007/s13246-020-00865-4] [
PMID] [
]
34. [34] M. R. Karim, T. Döhmen, D. Rebholz-Schuhmann, S. Decker, M. Cochez, and O. Beyan, "DeepCOVIDExplainer: Explainable COVID-19 Predictions Based on Chest X-ray Images," ArXiv, vol. abs/2004.04582, 2020.
35. [35] T. Mahmud, M. A. Rahman, and S. A. Fattah, "CovXNet: A multi-dilation convolutional neural network for automatic COVID-19 and other pneumonia detection from chest X-ray images with transferable multi-receptive feature optimization," Computers in Biology and Medicine, vol. 122, p. 103869, 2020/07/01/ 2020, doi:
https://doi.org/10.1016/j.compbiomed.2020.103869 [
DOI:10.1016/j.compbiomed.2020.103869.] [
PMID] [
]
36. [36] B. Ghoshal and A. Tucker, "Estimating Uncertainty and Interpretability in Deep Learning for Coronavirus (COVID-19) Detection," ArXiv, vol. abs/2003.10769, 2020.
37. [37] P. K. Sethy, S. K. Behera, P. K. Ratha, and P. Biswas, "Detection of coronavirus disease (COVID-19) based on deep features and support vector machine," 2020.
38. [38] Y. Yujun, L. Jianping, and Y. Yimei, "The research of the fast SVM classifier method," in 2015 12th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP), 18-20 Dec. 2015 2015, pp. 121-124, doi: 10.1109/ICCWAMTIP.2015.7493959. [
DOI:10.1109/ICCWAMTIP.2015.7493959]
39. [39] M. E. H. Chowdhury et al., "Can AI Help in Screening Viral and COVID-19 Pneumonia?," IEEE Access, vol. 8, pp. 132665-132676, 2020, doi: 10.1109/ACCESS.2020.3010287. [
DOI:10.1109/ACCESS.2020.3010287]
40. [40] L. Wang, Z. Q. Lin, and A. Wong, "COVID-Net: a tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images," Scientific Reports, vol. 10, no. 1, p. 19549, 2020/11/11 2020, doi: 10.1038/s41598-020-76550-z. [
DOI:10.1038/s41598-020-76550-z] [
PMID] [
]
41. [41] A. I. Khan, J. L. Shah, and M. M. Bhat, "CoroNet: A deep neural network for detection and diagnosis of COVID-19 from chest x-ray images," Computer Methods and Programs in Biomedicine, vol. 196, p. 105581, 2020/11/01/ 2020, doi:
https://doi.org/10.1016/j.cmpb.2020.105581 [
DOI:10.1016/j.cmpb.2020.105581.] [
PMID] [
]
42. [42] A. S. Elkorany and Z. F. Elsharkawy, "COVIDetection-Net: A tailored COVID-19 detection from chest radiography images using deep learning," Optik, vol. 231, p. 166405, 2021/04/01/ 2021, doi:
https://doi.org/10.1016/j.ijleo.2021.166405 [
DOI:10.1016/j.ijleo.2021.166405.] [
PMID] [
]
43. [43] R. Ribani and M. Marengoni, "A survey of transfer learning for convolutional neural networks," in 2019 32nd SIBGRAPI Conference on Graphics, Patterns and Images Tutorials (SIBGRAPI-T), 2019: IEEE, pp. 47-57.
44. [44] W. Pan and I. Hawrysiewycz, "Assisting learners to dynamically adjust learning processes through software agents," International Journal of Intelligent Information Technologies (IJIIT), vol. 2, no. 2, pp. 1-15, 2006.
45. [45] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification with deep convolutional neural networks," Advances in neural information processing systems, vol. 25, pp. 1097-1105, 2012.
46. [46] S. Mallat, "Understanding deep convolutional networks," Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 374, no. 2065, p. 20150203, 2016, doi: doi:10.1098/rsta.2015.0203. [
DOI:10.1098/rsta.2015.0203] [
PMID] [
]
47. [47] Y. Ji, Q. Wang, X. Li, and J. Liu, "A survey on tensor techniques and applications in machine learning," IEEE Access, vol. 7, pp. 162950-162990, 2019.
48. [48] D. P. Kingma and J. Ba, "Adam: A method for stochastic optimization," arXiv preprint arXiv:1412.6980, 2014.
49. [49] J. Zhang, "Gradient descent based optimization algorithms for deep learning models training," arXiv preprint arXiv:1903.03614, 2019.
50. [50] S. Ruder, "An overview of gradient descent optimization algorithms," arXiv preprint arXiv:1609.04747, 2016.
51. [51] "Chest X-ray images (covid-19)." https://github.com/ieee8023/covid-chestxray-dataset (accessed.
52. [52] "Chest X-ray images (pneumonia)." https://www.kaggle.com/chest-xray-pneumonia (accessed.
53. [53] F. Chollet, Deep learning with Python. Manning New York, 2018.
54. [54] T. Ozturk, M. Talo, E. A. Yildirim, U. B. Baloglu, O. Yildirim, and U. R. Acharya, "Automated detection of COVID-19 cases using deep neural networks with X-ray images," Computers in biology and medicine, vol. 121, p. 103792, 2020.
55. [55] L. Wang, Z. Q. Lin, and A. Wong, "Covid-net: A tailored deep convolutional neural network design for detection of covid-19 cases from chest x-ray images," Scientific Reports, vol. 10, no. 1, pp. 1-12, 2020.
56. [56] D. Singh and V. Kumar, "A Comprehensive Review of Computational Dehazing Techniques," Archives of Computational Methods in Engineering, vol. 26, no. 5, pp. 1395-1413, 2019/11/01 2019, doi: 10.1007/s11831-018-9294-z. [
DOI:10.1007/s11831-018-9294-z]
57. [57] A. Gupta, D. Singh, and M. Kaur, "An efficient image encryption using non-dominated sorting genetic algorithm-III based 4-D chaotic maps," Journal of Ambient Intelligence and Humanized Computing, vol. 11, no. 3, pp. 1309-1324, 2020/03/01 2020, doi: 10.1007/s12652-019-01493-x. [
DOI:10.1007/s12652-019-01493-x]
58. [58] M. Kaur, D. Singh, K. Sun, and U. Rawat, "Color image encryption using non-dominated sorting genetic algorithm with local chaotic search based 5D chaotic map," Future Generation Computer Systems, vol. 107, pp. 333-350, 2020/06/01/ 2020, doi:
https://doi.org/10.1016/j.future.2020.02.029 [
DOI:10.1016/j.future.2020.02.029.]
59. [59] M. Kaur and V. Kumar, "Beta chaotic map based image encryption using genetic algorithm," International Journal of Bifurcation and Chaos, vol. 28, no. 11, p. 1850132, 2018.
60. [60] H. S. Pannu, D. Singh, and A. K. Malhi, "Multi-objective particle swarm optimization-based adaptive neuro-fuzzy inference system for benzene monitoring," Neural Computing and Applications, vol. 31, no. 7, pp. 2195-2205, 2019/07/01 2019, doi: 10.1007/s00521-017-3181-7. [
DOI:10.1007/s00521-017-3181-7]
61. [61] D. Singh, V. Kumar, and M. Kaur, "Image dehazing using window-based integrated means filter," Multimedia Tools and Applications, vol. 79, no. 47, pp. 34771-34793, 2020/12/01 2020, doi: 10.1007/s11042-019-08286-6. [
DOI:10.1007/s11042-019-08286-6]
62. [62] D. Singh and V. Kumar, "Dehazing of outdoor images using notch based integral guided filter," Multimedia Tools and Applications, vol. 77, no. 20, pp. 27363-27386, 2018/10/01 2018, doi: 10.1007/s11042-018-5924-6. [
DOI:10.1007/s11042-018-5924-6]
63. [63] D. Singh, V. Kumar, and M. Kaur, "Single image dehazing using gradient channel prior," Applied Intelligence, vol. 49, no. 12, pp. 4276-4293, 2019/12/01 2019, doi: 10.1007/s10489-019-01504-6. [
DOI:10.1007/s10489-019-01504-6]