1. [1] م. رسولی, ب. میناییبیدگلی, ه. فیلی, م. امینیان, "استخراج بی ناظر ظرفیت فعل در زبان فارسی," پردازش علائم و دادهها, دوره ۹,شماره ۲, صفحات ۱۲-۳, ۱۳۹۱.
2. ]1[ M. S. Rasoli, B. Minaei Bidgoli, H. Faili, and M. Aminian, "Unsupervised Persian Verb Valency Induction," Signal and Data Processing, vol. 9, no. 2, 3-12, 2013.
3. [2] ا. عسکریان, م. کاهانی, ش. شریفی, "حسنگار: شبکۀ واژگان فارسی", پردازش علائم و دادهها, دوره ۱۵, شمارۀ ۱, صفحات ۸۶-۷۱, ۱۳۹۷.
4. ]2[ E. Asgarian, M. Kahani, and S. Sharifi, "HesNegar: Persian Sentiment WordNet," Signal and Data Processing, vol. 15, no. 1, pp. 71-86, 2018. [
DOI:10.29252/jsdp.15.1.71]
5. [3] ه. فیلی, "استفاده از تجزیهگرهای احتمالاتی زبان طبیعی جهت بهبود ترجمۀ افعال گروهی انگلیسی به فارسی," پردازش علائم و دادهها, دوره ۷, شماره ۱, صفحات ۷۶-۶۵, ۱۳۸۹.
6. ]3[ H. Faili, "Phrasal Verb Translation from English to Persian Using Statistical Parsing," Signal and Data Processing, vol. 7, no. 1, pp. 66-76, 2010.
7. [4] ه. فیلی, ح. قادر, م. آنالویی, "یک الگوی بیزی برای استخراج با مربی گرامر زبان طبیعی," پردازش علائم و دادهها, دوره ۹, شماره ۱, صفحات ۳۴-۱۹, ۱۳۹۱.
8. ]4[ H. Faili, H. Ghader, and M. Analoui, "A Bayesian Model for Supervised Grammar Induction," Signal and Data Processing, vol. 9, no. 1, pp. 19-34, 2012.
9. [5] ب. مسعودی, س. قوچانی, "رفع ابهام معنایی واژگان مبهم فارسی با مدل موضوعی LDA," پردازش علائم و دادهها, دوره ۱۲, شماره ۴, صفحات ۱۲۵-۱۱۷, ۱۳۹۴.
10. ]5[ B. Masoudi, and R. G. Saeid, "Farsi Word Sense Disambiguation with LDA Topic Model," Signal and Data Processing, vol. 12, no. 4, pp. 117-125, 2016.
11. ]6[ E. Asgari, and J.-C. Chappelier, "Linguistic ]1[ Analysis of Persian Poems, "Proceedings of the Second Workshop on Computational Linguistics for Literature, Atlanta, Georgia, pp. 23-31, 2013.
12. ]7[ D. Blei, A. Ng, and J. Michael, "Latent Dirichlet Allocation," Journal of Machine Learning Research, vol. 3, pp. 993-1022, 2003.
13. ]8[ S. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, and R. Harshman, "Indexing by Latent Semantic Analysis," Journal of the American Society for Information Science, vol. 41, pp. 391-407, 1990.
https://doi.org/10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9 [
DOI:10.1002/(SICI)1097-4571(199009)41:63.0.CO;2-9]
14. ]9[ Y. Du, Y. Yi, X. Li, X. Chen, Y. Fan, and F. Su, "Extracting and Tracking Hot Topics of Micro-blogs Based on Improved Latent Dirichlet Allocation," Engineering Applications of Artificial Intelligence, vol. 87, pp. 103279, 2020. [
DOI:10.1016/j.engappai.2019.103279]
15. ]10[ C. Geigle, "Inference Methods for Latent Dirichlet Allocation,", Course notes (cs598cxz advanced topics in information retrieval), Department of Computer Science, University of Illinois at Urbana-Champaign, 2016.
16. ]11[ Y. Gong, Q. Zhang, and X. Huang, "Hashtag Recommendation for Multimodal Microblog Posts," Neurocomputing, vol. 272, pp. 170-177, 2018. [
DOI:10.1016/j.neucom.2017.06.056]
17. ]12[ M. Hoffman, D. Blei, and F. Bach, "Online Learning for Latent Dirichlet Allocation," Advances in Neural Information Processing Systems. pp. 856-864, 2010.
18. ]13[ T. Hofmann, "Probabilistic Latent Semantic Indexing," SIGIR '99. pp. 50-57, 1999. [
DOI:10.1145/312624.312649]
19. ]14[ T. Hofmann, "Probabilistic Latent Semantic Analysis," UAI'99. pp. 289-296, 1999. [
DOI:10.1145/312624.312649]
20. ]15[ T. Hofmann, "Unsupervised Learning by Probabilistic Latent Semantic Analysis," Machine Learning, vol. 42, pp. 177-196, 2001. [
DOI:10.1023/A:1007617005950]
21. ]16[ H. Jelodar, Y. Wang, C. Yuan, X. Feng, X. Jiang, Y. Li, and L. Zhao, "Latent Dirichlet Allocation (LDA) and Topic Modeling: Models, Applications, a Survey," Multimedia Tools Applications, vol. 78, pp. 15169-15211, 2019. [
DOI:10.1007/s11042-018-6894-4]
22. ]17[ D. Jurafsky, and J. H. Martin, Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition, USA: Prentice Hall PTR, 2000.
23. ]18[ J. Leskovec, A. Rajaraman, and J. D. Ullman, Mining of Massive Datasets, USA: Cambridge University Press, 2014. [
DOI:10.1017/CBO9781139924801] [
PMID]
24. ]19[ B. Liu, C. Wang, Y. Wang, K. Zhang, and C. Wang, "Microblog Topic Mining Based on FR-DATM," Chinese Journal of Electronics, vol. 27, pp. 334-341, 2018. [
DOI:10.1049/cje.2017.12.006]
25. ]20[ X. Liu, Y. Gao, Z. Cao, and G. Sun, "LDA-based Topic Mining of Microblog Comments," Journal of Physics: Conference Series, vol. 1757, pp. 012118, 2021. [
DOI:10.1088/1742-6596/1757/1/012118]
26. ]21[ Y. Lu, Q. Mei, and C. Zhai, "Investigating Task Performance of Probabilistic Topic Models: An Empirical Study of PLSA and LDA," Information Retrieval, vol. 14, pp. 178-203, 2011. [
DOI:10.1007/s10791-010-9141-9]
27. ]22[ H. F. Maxwell, and K. Joseph, "The MovieLens Datasets: History and Context," ACM Transactions on Interactive Intelligent Systems, vol. 5, 2015. [
DOI:10.1145/2827872]
28. ]23[ T. Minka, "Estimating a Dirichlet Distribution,", Technical report, M.I.T., 2000.
29. ]24[ K. P. Morphy, Machine Learning: A Probabilistic Perspective, London, England: MIT Press, 2012.
30. ]25[ A. Raj, M. Stephens, and J. K. Pritchard, "fastSTRUCTURE: Variational Inference of Population Structure in Large SNP Data Sets," Genetics, vol. 197, pp. 573-589, 2014. [
DOI:10.1534/genetics.114.164350] [
PMID] [
]
31. ]26[ V. Smidl, and A. Quinn, The Variational Bayes Method in Signal Processing, Berlin Heidelberg, Germany: Springer, 2006.