Volume 20, Issue 2 (9-2023)                   JSDP 2023, 20(2): 59-68 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hasanabadi A, Jabbari E, Bahreinimotlagh M, Alizadeh * H, Olfatmiri Y. Improving accuracy of Acoustic Tomographic data using Phase-Space Thresholding method. JSDP 2023; 20 (2) : 4
URL: http://jsdp.rcisp.ac.ir/article-1-1223-en.html
Abstract:   (800 Views)
The acquisition of reliable flow velocity and streamflow estimates is vital and essential in aquatic studies.   Acoustic Tomography Technology is a branch of remote sensing science which innovatively developed for continuous monitoring of surface water currents in oceans, seas, and in recent years in rivers and is a promising method to measure Flow characteristics such as velocity & discharge with high accuracy and continuously in time.
The output of this system impressed by the influence of unknown factors and after the initial processing of raw data, some spikes appear in the data. Although the developers of this system have stated that a source of spurious data can be a complex salinity distribution in estuarine regions, failure to identify these outliers will cause errors in measurements and increase the error of data mining and time series forecasting algorithms.
In the previous studies, the spikes removed using the standard deviation method without any replacement.  In this study, Phase-Space Thresholding (PST) is proposed to detect and remove the spikes, which was developed for despiking output of Acoustic Doppler Velocimeter (ADV) data. This method combines three concepts: 1) the differentiation enhances the high-frequency portion of a signal, 2) the expected maximum of a normal, random series is given by the universal threshold, and 3) the good data cluster in a dense cloud in phase space. These concepts are used to construct an ellipsoid in a three-dimensional phase-space, then points which lie outside the threshold ellipsoid are designated as spikes. An important advantage of this method in comparison with various other methods is that it requires no parameters. Furthermore, another advantage of this method against the standard deviation method is the replacement of detected spikes with a reliable value. for replacement of detected spike’s values, we used the mean value of two adjacent data points on either side of the detected spike.
After 6 iterations of implementing the PST method on the input dataset a total of 8017 data, which is 32% of 25031 data were identified as spikes and replaced with a correct value. Moreover, the standard deviation value before despiking was 0/206 and after applying the PST method improves to 0/119. This change in standard deviation value shows that the data dispersion around signal mean reduces due to despiking process. The results show that the PST method has higher accuracy in comparison with the standard deviation approach.
Finally, it was observed that the comparison of the relative discharge error between the output of the PST method and the rating curve data (as a reference) is almost less than 20%. While this value exceeds 50% in the comparison between the standard deviation and the rating curve data.
Article number: 4
Full-Text [PDF 1056 kb]   (261 Downloads)    
Type of Study: Research | Subject: Paper
Received: 2021/04/15 | Accepted: 2022/05/11 | Published: 2023/10/22 | ePublished: 2023/10/22

References
1. [1] K. Kawanisi, A. Kaneko, S. Nigo, and M. Soltaniasl, "New acoustic system for continuous measurement of river discharge and water temperature," Water Sci. Eng., vol. 3,no.1,pp.47-55,2010,doi: 10.3882/j.issn.1674-2370.2010.01.005.
2. ]2 [مسعود بحرینی مطلق و همکاران،(1398)، "امکان سنجی پایش سیلاب با استفاده از دستگاه تیکه¬نگاری صوتی رودخانه¬ای و تعیین دقت اندازه¬گیری، حداق و حداکثر برد اندازه¬گیری"، اکوهیدرولوژی، دوره6، شماره3،پاییز 1398، ص 592-585
3. ]3 [حداد، پریسا، پایان¬نامه کارشناسی ارشد (1396)، عنوان: تشخیص داده پرت در داده¬های سری زمانی با الگوریتم داده¬کاوی، دانشگاه آزاد اسلامی، واحد مرودشت، دانشکده مهندسی، گروه کامپیوتر و فناوری اطلاعات.
4. ]4 [ مسعود بحرینی مطلق و همکاران،(1399)، "امکان سنجی پایش خودکار رودخانه¬های ایران با استفاده از فناوری تیکه‌نگاری¬ صوتی رودخانه¬ای 50 کیلوهرتز"، مجله انجمن مهندسی صوتیات ایران، سال هشتم، شماره1، pp. 14-21.
5. ]5 [مسعود بحرینی مطلق و همکاران،(1398)، "امکان سنجی پایش جریان¬های خلیج فارس با استفاده از فناوری تیکه¬نگاری صوتی دریایی 10 کیلوهرتز"، نشریه مهندسی دریا، سال پانزدهم، شماره30، پاییز و زمستان 1398، (131-138) .
6. ]6 [مسعود بحرینی مطلق و همکاران،(1399)، "پایش پیوسته دمای آب با استفاده از فناوری تیکه¬نگاری صوتی"، نشریه مهندسی عمران امیرکبیر، دوره 51 شماره5، سال 1399.
7. ]7[ مسعود بحرینی¬مطلق و همکاران. (1397). طراحی، ساخت و ارزیابی دستگاه تیکه¬نگاری صوتی رودالی، مجله انجمن مهندسی صوتیات ایران، سال ششم، شماره 1، بهار و تابستان 1397.
8. ]8 [مسعود بحرینی مطلق و همکاران،(1398)، "اولین تجریه سامانه تیکه¬نگاری صوتی برای پایش سرعت جریان رودخانه در ایران"، پژوهشات آب و خاک ایران، دوره50، شماره7، آذر1398.
9. ]9 [مسعود بحرینی مطلق و همکاران،(1397)، "ابررسی وضعیت جریان آب در دریاچه هفت برم با استفاده از فناوری تکه¬نگاری صوتی"، نشریه آب و خاک (علوم و صنایع کشاورزی)، جلد33، شماره1، فروردین-اردیبهشت ، ص. 35-23.
10. [10] D. G. Goring and V. I. Nikora, "Despiking acoustic doppler velocimeter data," J. Hydraul. Eng., vol. 128, no. 1, pp. 117-126, 2002,doi:10.1061/(ASCE)07339429(2002)128:1(117). [DOI:10.1061/(ASCE)0733-9429(2002)128:1(117)]
11. [11] M. Roy, V. R. Kumar, B. D. Kulkarni, J. Sanderson, M. Rhodes, and M. Vander Stappen, "Simple denoising algorithm using wavelet transform," AIChE J., vol. 45, no. 11, pp.2461-2466,1999,doi:10.1002/aic.690451120. [DOI:10.1002/aic.690451120]
12. [12] N. Carolina and N. Carolina, "Identification of Low-Dimensional Energy Containing / Flux Transporting Eddy Motion in the Atmospheric Surface Layer Using Wavelet Thresholding Methods," no. 1941, pp. 377-389, 1998. https://doi.org/10.1175/1520-0469(1998)055<0377:IOLDEC>2.0.CO;2 [DOI:10.1175/1520-0469(1998)0552.0.CO;2]
13. [13] H. D. I. Abarbanel, J. P. Gollub, F. Combes, A. Mazure, and A. Blanchard, "Analysis of Observed Chaotic Data Analysis of Observed Chaotic Data," vol. 49, no. 11, pp. 10-13, 1996, doi: 10.1063/1.881528. [DOI:10.1063/1.881528]
14. [14] K. Kawanisi, M. Razaz, J. Yano, and K. Ishikawa, "Continuous monitoring of a dam flush in a shallow river using two crossing ultrasonic transmission lines," vol. 055303, 2013, doi: 10.1088/0957-0233/24/5/055303. [DOI:10.1088/0957-0233/24/5/055303]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Signal and Data Processing