1. [1] I. Manzoor and N. Kumar, "A feature reduced intrusion detection system using ANN classifier," Expert Systems with Applications, vol. 88, pp. 249-257, 2017. [
DOI:10.1016/j.eswa.2017.07.005]
2. [2] A. Khraisat, I. Gondal, P. Vamplew, and J. Kamruzzaman, "Survey of intrusion detection systems: techniques, datasets and challenges," Cybersecurity, vol. 2, no. 1, pp. 1-22, 2019. [
DOI:10.1186/s42400-019-0038-7]
3. [3] T. A. Alamiedy, M. Anbar, Z. N. Alqattan, and Q. M. Alzubi, "Anomaly-based intrusion detection system using multi-objective grey wolf optimisation algorithm," Journal of Ambient Intelligence and Humanized Computing, pp. 1-22, 2019. [
DOI:10.1007/s12652-019-01569-8]
4. [4] E.-G. Talbi, "Machine learning into metaheuristics: A survey and taxonomy of data-driven metaheuristics," 2020.
5. [5] D. Molina, J. Poyatos, J. Del Ser, S. García, A. Hussain, and F. Herrera, "Comprehensive Taxonomies of Nature-and Bio-inspired Optimization: Inspiration Versus Algorithmic Behavior, Critical Analysis Recommendations," Cognitive Computation, vol. 12, no. 5, pp. 897-939, 2020. [
DOI:10.1007/s12559-020-09730-8]
6. [6] X. Gao, C. Shan, C. Hu, Z. Niu, and Z. Liu, "An adaptive ensemble machine learning model for intrusion detection," IEEE Access, vol. 7, pp. 82512-82521, 2019. [
DOI:10.1109/ACCESS.2019.2923640]
7. [7] J. M. Fossaceca, T. A. Mazzuchi, and S. Sarkani, "MARK-ELM: Application of a novel Multiple Kernel Learning framework for improving the robustness of Network Intrusion Detection," Expert Systems with Applications, vol. 42, no. 8, pp. 4062-4080, 2015. [
DOI:10.1016/j.eswa.2014.12.040]
8. [8] K. M. Prasad, A. R. M. Reddy, and K. V. Rao, "BIFAD: Bio-inspired anomaly based HTTP-flood attack detection," Wireless Personal Communications, vol. 97, no. 1, pp. 281-308, 2017. [
DOI:10.1007/s11277-017-4505-8]
9. [9] A. A. Aburomman and M. B. I. Reaz, "A novel SVM-kNN-PSO ensemble method for intrusion detection system," Applied Soft Computing, vol. 38, pp. 360-372, 2016. [
DOI:10.1016/j.asoc.2015.10.011]
10. [10] D. Arivudainambi, V. K. KA, and S. S. Chakkaravarthy, "LION IDS: A meta-heuristics approach to detect DDoS attacks against Software-Defined Networks," Neural Computing and Applications, vol. 31, no. 5, pp. 1491-1501, 2019. [
DOI:10.1007/s00521-018-3383-7]
11. [11] S. Velliangiri and H. M. Pandey, "Fuzzy-Taylor-elephant herd optimization inspired Deep Belief Network for DDoS attack detection and comparison with state-of-the-arts algorithms," Future Generation Computer Systems, vol. 110, pp. 80-90, 2020. [
DOI:10.1016/j.future.2020.03.049]
12. [12] A. J. Wilson and S. Giriprasad, "A Feature Selection Algorithm for Intrusion Detection System Based On New Meta-Heuristic Optimization," Journal of Soft Computing and Engineering Applications, vol. 1, no. 1, 2020.
13. [13] T. Khorram and N. A. Baykan, "Feature selection in network intrusion detection using metaheuristic algorithms," International Journal of Advanced Research, Ideas and Innovations in Technology, vol. 4, no. 4, 2018.
14. [14] Q. Al-Tashi, S. J. Abdulkadir, H. M. Rais, S. Mirjalili, and H. Alhussian, "Approaches to multi-objective feature selection: A systematic literature review," IEEE Access, vol. 8, pp. 125076-125096, 2020. [
DOI:10.1109/ACCESS.2020.3007291]
15. [15] J. Cai, J. Luo, S. Wang, and S. Yang, "Feature selection in machine learning: A new perspective," Neurocomputing, vol. 300, pp. 70-79, 2018. [
DOI:10.1016/j.neucom.2017.11.077]
16. [16] M. Di Mauro, G. Galatro, G. Fortino, and A. Liotta, "Supervised feature selection techniques in network intrusion detection: A critical review," Engineering Applications of Artificial Intelligence, vol. 101, p. 104216, 2021. [
DOI:10.1016/j.engappai.2021.104216]
17. [17] R. Purushothaman, S. Rajagopalan, and G. Dhandapani, "Hybridizing Gray Wolf Optimization (GWO) with Grasshopper Optimization Algorithm (GOA) for text feature selection and clustering," Applied Soft Computing, vol. 96, p. 106651, 2020. [
DOI:10.1016/j.asoc.2020.106651]
18. [18] E. Emary, H. M. Zawbaa, and C. Grosan, "Experienced gray wolf optimization through reinforcement learning and neural networks," IEEE transactions on neural networks and learning systems, vol. 29, no. 3, pp. 681-694, 2017. [
DOI:10.1109/TNNLS.2016.2634548] [
PMID]
19. [19] A. Thakkar and R. Lohiya, "Attack classification using feature selection techniques: a comparative study," Journal of Ambient Intelligence and Humanized Computing, vol. 12, no. 1, pp. 1249-1266, 2021. [
DOI:10.1007/s12652-020-02167-9]
20. [20] R. Ahmadi, G. Ekbatanifard, and P. Bayat, "A Modified Grey Wolf Optimizer Based Data Clustering Algorithm," Applied Artificial Intelligence, vol. 35, no. 1, pp. 63-79, 2021. [
DOI:10.1080/08839514.2020.1842109]
21. [21] A. N. Singh, J. Mrudula, R. Pandey, and S. Das, "A Comparative Study of Four Genetic Algorithm-Based Crossover Operators for Solving Travelling Salesman Problem," in Intelligent Algorithms for Analysis and Control of Dynamical Systems: Springer, 2021, pp. 33-40. [
DOI:10.1007/978-981-15-8045-1_4]
22. [22] G. S. Kushwah and V. Ranga, "Optimized extreme learning machine for detecting DDoS attacks in cloud computing," Computers & Security, p. 102260, 2021. [
DOI:10.1016/j.cose.2021.102260]
23. [23] K. Singh, L. Kaur, and R. Maini, "Comparison of Principle Component Analysis and Stacked Autoencoder on NSL-KDD Dataset," in Computational Methods and Data Engineering: Springer, 2021, pp. 223-241. [
DOI:10.1007/978-981-15-6876-3_17]
24. [24] S. Gavel, A. S. Raghuvanshi, and S. Tiwari, "Distributed intrusion detection scheme using dual-axis dimensionality reduction for Internet of things (IoT)," The Journal of Supercomputing, pp. 1-24, 2021. [
DOI:10.1007/s11227-021-03697-5]
25. [25] M. C. Belavagi and B. Muniyal, "Performance evaluation of supervised machine learning algorithms for intrusion detection," Procedia Computer Science, vol. 89, pp. 117-123, 2016. [
DOI:10.1016/j.procs.2016.06.016]
26. [26] S. Shakya, "Modified Gray Wolf Feature Selection and Machine Learning Classification for Wireless Sensor Network Intrusion Detection," 2021. [
DOI:10.36548/jsws.2021.2.006]
27. [27] O. Almomani, "A Hybrid Model Using Bio-Inspired Metaheuristic Algorithms for Network Intrusion Detection System," CMC-COMPUTERS MATERIALS & CONTINUA, vol. 68, no. 1, pp. 409-429, 2021. [
DOI:10.32604/cmc.2021.016113]