1. [1] Y. Koren, "Factorization Meets the Neighborhood: a Multifaceted Collaborative Filtering Mode,," Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Las Vegas, Nevada, USA, August 24-27, 2008, 2008. [
DOI:10.1145/1401890.1401944] [
PMID]
2. [2] F. Ricci, L. Rokach and B. Shapira, "Recommender Systems Handbook," Springer, 2011. [
DOI:10.1007/978-0-387-85820-3]
3. [3] F. Isinkaye, Y. Folajimi and B. Ojokoh, "Recommendation systems: Principles, methods and evaluation," Egyptian Informatics Journal 16, 261-273 ,2015. [
DOI:10.1016/j.eij.2015.06.005]
4. [4] E. Q. Silva, C. G.Camilo-Junior, L. MarioL.Pascoal and C. Thierson, "An evolutionary approach for combining results of recommender systems techniques based on collaborative filtering," IEEE Congress on Evolutionary Computation (CEC), Beijing, China, 2014, pp. 959-966, 2014. [
DOI:10.1109/CEC.2014.6900631] [
PMID] [
]
5. [5] B. B. Sinha and R. Dhanalakshmi, "Evolution of recommender system over the time," Soft Comput 23, 12169-12188, 2019. [
DOI:10.1007/s00500-019-04143-8]
6. [6] S. Gupta and S. Nagpal, "Trust Aware Recommender Systems: A Survey on Implicit Trust Generation Techniques," (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 3594-3599, 2015.
7. [7] M. Papagelis, D. Plexousakis and T. K. Kutsuras, "Alleviating the Sparsity Problem of Collaborative Filtering Using Trust Inferences," iTrust 2005, LNCS 3477, pp. 224 - 239, 2005.. [
DOI:10.1007/11429760_16]
8. [8] J. Bobadilla, F. Ortega, A. Hernando and A. Gutiérrez, "Recommender systems survey," Knowledge-Based Systems 46 109-132,2013. [
DOI:10.1016/j.knosys.2013.03.012]
9. [9] T. Dunning, "Accurate methods for the statistics of surprise and coincidence," Computational Linguistics Volume 19, Number 1 pages 61-74,1993.
10. [10] T. K, Paradarami, NathanielD, Bastian, J. and Wightman, "A hybrid recommender system using artificial neural networks," Expert Systems With Applications 83 (2017). [
DOI:10.1016/j.eswa.2017.04.046]
11. [11] Z. Kang, C. Peng and Q. Cheng, "Top-N Recommender System via Matrix Completion," Association for the Advancement of Artificial 2016. [
DOI:10.1609/aaai.v30i1.9967]
12. [12] U. Kużelewska, "Clustering Algorithms in Hybrid Recommender System on MovieLens Data," UDIES IN LOGIC, GRAMMAR AND RHETORIC 37 (50) 2014 [
DOI:10.2478/slgr-2014-0021]
13. [13]حسینی منیره، نصرالهی مقصود، بقائی علی. یک سامانه توصیهگر ترکیبی با استفاده از اعتماد و خوشهبندی دوجهته بهمنظور افزایش کارایی پالایشگروهی. پردازش علائم و دادهها. ۱۳۹۷; ۱۵ (۲) :۱۱۹-۱۳۲
14. [13] M. Hosseini, M. Nasrollahi and A. Baghaei, "A hybrid recommender system using trust and bi-clustering in order to increase the efficiency of collaborative filtering,". JSDP 2018; 15 (2) :119-132. [
DOI:10.29252/jsdp.15.2.119]
15. [14] P. Massa and B. Bhattacharjee, "Using Trust in Recommender Systems:An Experimental Analysis," iTrust,Springer-Verlag Berlin Heidelberg , LNCS 2995, pp. 221-235,2004. [
DOI:10.1007/978-3-540-24747-0_17]
16. [15] W. Yuan, L. Shu, H. Chao, D. Guan, Y. Lee and S. Lee, "itars: trustaware recommender system using implicit trust networks,," Communications,IET, 4(14):17091721, 2010. [
DOI:10.1049/iet-com.2009.0733]
17. [16] SAMUEL, O. E. L, D. VICTOR, L. ANISIO, M. LUIZ and P. GISELE L, "Is Rank Aggregation Effective in Recommender Systems? An Experimental Analysis," ACM Transactions on Intelligent Systems and Technology 11(2), 2019. [
DOI:10.1145/3365375]
18. [17] M. T. Ribeiro, Nivio Ziviani,, Edleno Silva De Moura and , Itamar Hata,, "Multiobjective Pareto-Efficient Approaches for Recommender Systems," ACM Trans. Intell. Syst. Technol. 5, 4, Article 53 , 2014. [
DOI:10.1145/2629350]
19. [18] S. Oliveira, V. Diniz, A. Lacerda and G. L. Pappa., "Evolutionary rank aggregation for recommender systems.," IEEE Congress on Evolutionary Computation (CEC). 255-262, 2016. [
DOI:10.1109/CEC.2016.7743803]
20. [19] s. Mirjalili, "Evolutionary Algorithms and Neural Networks," Studies in Computational Intelligence 780,Springer International Publishing AG, part of Springer Nature, 2019.
21. [20] B. Alhijawi and Y. Kilani, "A collaborative filtering recommender system using genetic algorithm," Information Processing & Management 57(6):102310, 2020. [
DOI:10.1016/j.ipm.2020.102310]
22. [21] M. Bhusal and A. Shakya, "Collaborative Filtering Recommender System Using Genetic Algorithm," Proceedings of IOE Graduate Conference, Volume: 6, 2019.
23. [22] J. Xiao, M. Luo, J.-M. Chen and J.-J. Li, "An Item Based Collaborative Filtering System Combined with Genetic Algorithms Using Rating Behavior," Springer International Publishing Switzerland , ICIC 2015, Part III, LNAI 9227, pp. 453-460,, 2015. [
DOI:10.1007/978-3-319-22053-6_48]
24. [23] F. H. d. Olmo and E. Gaudioso, "Evaluation of recommender systems: A new approach," Expert Systems with Applications 35 790-804 ,2008. [
DOI:10.1016/j.eswa.2007.07.047]
25. [24] G. Takacs, I. Pilaszy, B. Nemeth and D. Tikk, "Scalable Collaborative Filtering Approaches for Large Recommender Systems," Journal of Machine Learning Research 10 623-656,, 2009.
26. [25] S. Oliveira, V. Diniz, A. Lacerda, L. Merschmanm and G. L. Pappa., "Is Rank Aggregation Effective in Recommender Systems? An Experimental Analysis," ACM Trans. Intell.Syst. Technol. 1, 1, Article 1 ,2019. [
DOI:10.1145/3365375]
27. [26] E. Q. d. Silva, C. G. Camilo, L. M. L. Pascoal and T. C. Rosa, "An evolutionary approach for combining results of recommender systems techniques based on Collaborative Filtering," Expert Systems With Applications 53 204-218,2016. [
DOI:10.1016/j.eswa.2015.12.050]