1. P. Lops, M. Polignano, C. Musto, A. Silletti, and G. Semeraro, "ClayRS: An end-to-end framework for reproducible knowledge-aware recommender systems," Information Systems, vol. 119, p. 102273, 2023, doi:
https://doi.org/10.1016/j.is.2023.102273 [
DOI:10.1016/ j.is.2023.102273.]
2. J.-C. Zhang, A. M. Zain, K.-Q. Zhou, X. Chen, and R.-M. Zhang, "A review of recommender systems based on knowledge graph embedding," Expert Systems with Applications, vol. 250, p. 123876, 2024, doi:
https://doi.org/10.1016/j.eswa.2024.123876 [
DOI:10.1016 /j.eswa.2024.123876.]
3. [A. Ghannadrad, M. Arezoumandan, L. Candela, and D. Castelli, "Recommender systems for science: A basic taxonomy," 2022, pp. 1-8.
4. K. Saini and A. Singh, "A content-based recommender system using stacked LSTM and an attention-based autoencoder," Measurement: Sensors, p. 100975, 2023, doi: https://doi.org/ 10.1016/ j.measen.2023.100975.
https://doi.org/10.1016/j.measen.2023.100975 [
DOI:10.1016/ j.measen.2023.100975.]
5. [P. B. Thorat, R. Goudar, and S. Barve, "Survey on collaborative filtering, content-based filtering and hybrid recommendation system," International Journal of Computer Applications, vol. 110, no. 4, 2015. [
DOI:10.5120/19308-0760]
6. [M. Moradi and J. Hamidzadeh, "Ensemble-based Top-k Recommender System Considering Incomplete Data," Journal of AI and Data Mining, 2019.
7. [X. Su and T. M. Khoshgoftaar, "A survey of collaborative filtering techniques," Advances in artificial intelligence, vol. 2009, 2009. [
DOI:10.1155/2009/421425]
8. C. C. Aggarwal, Recommender systems. Springer, 2016. [
DOI:10.1007/978-3-319-29659-3]
9. p. bahrani, B. Minaei Bidgoli, H. Parvin, M. Mirzarezaee, and A. Keshavarz, "An Ontological Hybrid Recommender System for Dealing with Cold Start Problem," jsdp, vol. 19, no. 1, pp. 1-18, 2022, doi: 10.52547/jsdp.19.1.1. [
DOI:10.52547/jsdp.19.1.1]
10. R. Yera and L. Martinez, "Fuzzy tools in recommender systems: A survey," International Journal of Computational Intelligence Systems, vol. 10, no. 1, pp. 776-803, 2017. [
DOI:10.2991/ijcis.2017.10.1.52]
11. E. G. Muñoz, J. Parraga-Alava, J. Meza, J. J. Proaño Morales, and S. Ventura, "Housing fuzzy recommender system: A systematic literature review," Heliyon, vol. 10, no. 5, p. e26444, 2024, doi:
https://doi.org/10.1016/j.heliyon.2024.e26444 [
DOI:10.1016/j.heliyon.2024.e26444.]
12. F. Houshmand-Nanehkaran, S. M. Lajevardi, and M. Mahlouji-Bidgholi, "Optimization of fuzzy similarity by genetic algorithm in user-based collaborative filtering recommender systems," Expert Systems, vol. 39, no. 4, p. e12893, 2022, doi:
https://doi.org/10.1111/exsy.12893 [
DOI:10.1111/exsy.12893.]
13. m. robati anaraki and n. riahi, "An evolutionary approach for automating the selection of optimum Algorithm in Collaborative Filtering Recommender Systems," jsdp, vol. 20, no. 1, pp. 59-78, 2023. [Online]. Available: http://jsdp.rcisp.ac.ir/article-1-1206-en.html. [
DOI:10.61186/jsdp.20.1.59]
14. H. Koohi and K. Kiani, "User based Collaborative Filtering using fuzzy C-means," Measurement, vol. 91, pp. 134-139, 2016. [
DOI:10.1016/j.measurement.2016.05.058]
15. R. Katarya and O. P. Verma, "An effective web page recommender system with fuzzy c-mean clustering," Multimedia Tools and Applications, vol. 76, no. 20, pp. 21481-21496, 2017. [
DOI:10.1007/s11042-016-4078-7]
16. X. Li and D. Li, "Improved Hybrid Collaborative Filtering Algorithm Based on K-Means," in International Conference on Applications and Techniques in Cyber Security and Intelligence, 2018: Springer, pp. 928-934. [
DOI:10.1007/978-3-319-98776-7_111]
17. N. K. Manikandan and M. Kavitha, "A content recommendation system for e-learning using enhanced Harris Hawks Optimization, Cuckoo search and DSSM," Journal of Intelligent & Fuzzy Systems, no. Preprint, pp. 1-14, 2023. [
DOI:10.3233/JIFS-213422]
18. B. Alhijawi and Y. Kilani, "A collaborative filtering recommender system using genetic algorithm," Information Processing & Management, vol. 57, no. 6, p. 102310, 2020, doi:
https://doi.org/10.1016/j.ipm.2020.102310 [
DOI:10.1016/j.ipm.2020.102310.]
19. R. Paulavičius, L. Stripinis, S. Sutavičiūtė, D. Kočegarov, and E. Filatovas, "A novel greedy genetic algorithm-based personalized travel recommendation system," Expert Systems with Applications, vol. 230, p. 120580, 2023. [
DOI:10.1016/j.eswa.2023.120580]
20. R. Katarya and O. P. Verma, "A collaborative recommender system enhanced with particle swarm optimization technique," Multimedia Tools and Applications, vol. 75, no. 15, pp. 9225-9239, 2016. [
DOI:10.1007/s11042-016-3481-4]
21. R. Katarya, "Movie recommender system with metaheuristic artificial bee," Neural Computing and Applications, vol. 30, no. 6, pp. 1983-1990, 2018. [
DOI:10.1007/s00521-017-3338-4]
22. R. Katarya and O. P. Verma, "Recommender system with grey wolf optimizer and FCM," Neural Computing and Applications, vol. 30, no. 5, pp. 1679-1687, 2018. [
DOI:10.1007/s00521-016-2817-3]
23. R. Katarya and O. P. Verma, "An effective collaborative movie recommender system with cuckoo search," Egyptian Informatics Journal, vol. 18, no. 2, pp. 105-112, 2017. [
DOI:10.1016/j.eij.2016.10.002]
24. S. Yadav and S. Nagpal, "An Improved Collaborative Filtering Based Recommender System using Bat Algorithm," Procedia computer science, vol. 132, pp. 1795-1803, 2018. [
DOI:10.1016/j.procs.2018.05.155]
25. V. Vellaichamy and V. Kalimuthu, "Hybrid Collaborative Movie Recommender System Using Clustering and Bat Optimization," International Journal of Intelligent Engineering and Systems, vol. 10, no. 5, pp. 38-47, 2017. [
DOI:10.22266/ijies2017.1031.05]
26. J. M. Leski, "Fuzzy c-ordered-means clustering," Fuzzy Sets and Systems, vol. 286, pp. 114-133, 2016. [
DOI:10.1016/j.fss.2014.12.007]
27. J. Kennedy and R. Eberhart, "Particle swarm optimization," in Proceedings of ICNN'95 - International Conference on Neural Networks, 27 Nov.-1 Dec. 1995 1995, vol. 4, pp. 1942-1948 vol.4, doi: 10.1109/ICNN.1995.488968. [
DOI:10.1109/ICNN.1995.488968]
28. Z.-H. Zhan, J. Zhang, Y. Li, and H. S.-H. Chung, "Adaptive particle swarm optimization," IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 39, no. 6, pp. 1362-1381, 2009. [
DOI:10.1109/TSMCB.2009.2015956]
29. Y. Shi and R. C. Eberhart, "Fuzzy adaptive particle swarm optimization," in Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No. 01TH8546), 2001, vol. 1: IEEE, pp. 101-106. [
DOI:10.1109/CEC.2001.934377]
30. R. Sadeghi and J. Hamidzadeh, "Automatic support vector data description," Soft Computing, vol. 22, no. 1, pp. 147-158, 2018. [
DOI:10.1007/s00500-016-2317-5]
31. J. Hamidzadeh, R. Sadeghi, and N. Namaei, "Weighted support vector data description based on chaotic bat algorithm," Applied Soft Computing, vol. 60, pp. 540-551, 2017. [
DOI:10.1016/j.asoc.2017.07.038]
32. B. Alatas, E. Akin, and A. B. Ozer, "Chaos embedded particle swarm optimization algorithms," Chaos, Solitons & Fractals, vol. 40, no. 4, pp. 1715-1734, 2009. [
DOI:10.1016/j.chaos.2007.09.063]
33. R. Logesh, V. Subramaniyaswamy, V. Vijayakumar, X.-Z. Gao, and V. Indragandhi, "A hybrid quantum-induced swarm intelligence clustering for the urban trip recommendation in smart city," Future Generation Computer Systems, vol. 83, pp. 653-673, 2018. [
DOI:10.1016/j.future.2017.08.060]