دوره 19، شماره 2 - ( 7-1401 )                   جلد 19 شماره 2 صفحات 60-39 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Daneshpour N, mirabolghasemi S F. Missing Data Imputation in Multivariate Time Series Data. JSDP 2022; 19 (2) :39-60
URL: http://jsdp.rcisp.ac.ir/article-1-1104-fa.html
دانشپور نگین، میرابوالقاسمی سیده فاطمه. پرکردن داده‌های گمشده در داده‌های سری زمانی چندمتغیره. پردازش علائم و داده‌ها 1401; 19 (2) :60-39

URL: http://jsdp.rcisp.ac.ir/article-1-1104-fa.html


دانشکده مهندسی کامپیوتر، دانشگاه تربیت دبیر شهید رجایی
چکیده:   (222 مشاهده)
داده­های سری زمانی چندمتغیره در زمینه‌­های مختلف مانند بیوانفورماتیک، زیست­‌شناسی، ژنتیک، نجوم، علوم جغرافیایی و امور مالی یافت می‌­شوند. بسیاری از این مجموعه‌داده­‌ها دارای داده گمشده هستند. جایگذاری داده­‌های گمشده سری زمانی چندمتغیره، یکی از مباحث چالش برانگیز است و قبل از فرایند یادگیری یا پیش­بینی سری­‌های زمانی باید با دقت مورد توجه و بررسی قرار گیرد. تحقیقات فراوانی در استفاده از روش‌های مختلف برای جایگذاری داده‌­های گمشده سری زمانی انجام شده ­است که به‌طورمعمول شامل روش‌­های تجزیه و تحلیل و مدل­‌سازی­‌های ساده در کاربردهای خاص و یا سری­‌های زمانی تک‌متغیره هستند. در این مقاله یک نسخه بهبود‌یافته از درون‌یابی معکوس فاصله وزن‌دار برای جایگذاری داده‌­های گمشده پیشنهاد شده‌ است. روش درون‌یابی معکوس فاصله وزن‌دار دو محدودیت اساسی دارد: 1) یافتن بهترین نقاط نزدیک­تر به داده‌­های گمشده 2) انتخاب توان تأثیر بهینه برای همسایگان داده گمشده. برای بهبود روش درون‌یابی، از خوشه­‌بندی k-means استفاده شده ‌است، تا همسایه‌­های با بیشترین شباهت به الگوی داده­ای انتخاب شوند. از آنجا که میزان تأثیر هر یک از همسایه‌­ها بر روی داده گمشده متفاوت است، از الگوریتم جستجوی فاخته برای تعیین توان تأثیر همسایگی استفاده می­شود. برای ارزیابی عملکرد روش پیشنهادی، از پنج معیار ارزیابی شناخته‌شده ‌استفاده می­شود. نتایج تجربی بر روی چهار مجموعه‌داده UCI با درصدهای مختلف گمشدگی مورد بررسی قرار گرفته و در‌مجموع الگوریتم پیشنهادی نسبت به سه روش مقایسه‌­ای دیگر عملکرد بهتر و بهطور میانگین حدود 05/0 خطای RMSE، 04/0 خطای MAE، 003/0 خطای MSE و  5 درصد خطای MAPE داشته است. میزان همبستگی داده‌های واقعی و مقدار برآورد‌شده در روش پیشنهادی بسیار مطلوب و در حدود 99 درصد است.
شماره‌ی مقاله: 4
متن کامل [PDF 1666 kb]   (51 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: مقالات پردازش داده‌های رقمی
دریافت: 1398/10/9 | پذیرش: 1399/7/22 | انتشار: 1401/7/8 | انتشار الکترونیک: 1401/7/8

فهرست منابع
1. [1] R. H. Shumway and D. S. Stoffer, "Time series analysis and its applications: with R examples", Springer Science & Business Media, Fourth edition, 2017. [DOI:10.1007/978-3-319-52452-8]
2. [2] Ratanamahatana C., "Multimedia retrieval using time series representation and relevance feedback", in: Proceedings of 8th International Conference on Asian Digital Libraries, 2005, pp. 400-405. [DOI:10.1007/11599517_48]
3. [3] C.Ratanamahatana, V. Niennattrakul, "Clustering multimedia data using time series", in: Proceedings of the International Conference on Hybrid InformationTechnology, ICHIT '06, 2016, pp.372-379.
4. [4] M.S. Mahmoud, M.F. Emzir, "State estimation with asynchronous multi-rate multi-smart sensors", Information Sciences, vol.196, pp.15-27, 2012. [DOI:10.1016/j.ins.2012.01.034]
5. [5] S. Mohamed, T. Marwala, "Neural network based techniques for estimating missing data in databases", pp. 27-32, 2005.
6. [6] W. Qiao, Z. GAO, R.G. Harley, "Continuous on-line identification of nonlinear plants in power systems with missing sensor measurements", IEEE, pp. 1729-1734, 2005.
7. [7] J. Honaker, G. King, "What to do about missing values in time-series cross-section data", American Journal of Political Science, vol.54 (2), pp.561-581, 2010. [DOI:10.1111/j.1540-5907.2010.00447.x]
8. [8] J. Lin, E. Keogh, S. Lonardi, J. Lankford, D. Nystrom, "Visually mining and monitoring massive time series", in: Proceedings of 2004ACM SIGKDD International Conference on Knowledge Discovery and data Mining - KDD '04, 2004, 460-475. [DOI:10.1145/1014052.1014104]
9. [9] R.J.A. Little, D.B. Rubin, "Statistical analysis with missing data", 3rd Edition, 2014.
10. [10] M. Amiri, R. Jensen, "Missing data imputation using fuzzy-rough methods", Neurocomputing, vol.196, pp.15-27, 2016. [DOI:10.1016/j.neucom.2016.04.015]
11. [11] C.K. Enders, "Applied Missing Data Analysis", Guilford Press. ISBN 978-1-60623-639-0 .2010.
12. [12] D. M. Kreindler, C. J. Lumsden, "The effects of the irregular sample and missing data in time series analysis", Nonlinear Dynamics Psychology and Life Sciences, vol.10(2), pp.187-214, 2012.
13. [13] C.De Boor, E. Mathématicien, "A practical guide to splines", Mathematical Sciences, vol. 27, 2005.
14. [14] D. Mondal, D. B. Percival, "Wavelet variance analysis for gappy time series", Annals Inst. Stat. Math, vol.62, pp. 943-966, 2010. [DOI:10.1007/s10463-008-0195-z]
15. [15] K. Rehfeld, N. Marwan, J. Heitzig, "Comparison of correlation analysis techniques for irregularly sampled time series", Nonlinear Process. Geophys, vol.18, 2011. [DOI:10.5194/npg-18-389-2011]
16. [16] P.J. Garca-Laencina, J.-L Sancho-Gómez. "Pattern classification with missing data: a review", Neural Comput, vol.19, 2010. [DOI:10.1007/s00521-009-0295-6]
17. [17] R. Mazumder, T. Hastie, R. Tibshirani, "Spectral regularization algorithms for learning large incomplete matrices", Machine learning research, vol.11, pp. 2287-2322, 2010.
18. [18] Y. Koren, R. Bell, C. Volinsky, "Matrix factorization techniques for recommender systems", Comput, vol.42, 2009. [DOI:10.1109/MC.2009.263]
19. [19] I. R. White, P. Royston, A. M. Wood, "Multiple imputation using chained equations: issues and guidance for practice", Stat. medicine, vol.30, pp. 377-399, 2011. [DOI:10.1002/sim.4067] [PMID]
20. [20] B. J. Wells, K. M. Chagin, A. S. Nowacki, M. W. Kattan, "Strategies for handling missing data in electronic health record derived data," EGEMS 1, 2013. [DOI:10.13063/2327-9214.1035] [PMID] [PMCID]
21. [21] C. Lipton, C. Kale," Modeling Missing Data in Clinical Time Series with RNNs", Machine Learning for Healthcare, pp.56, 2016.
22. [22] Li. Li, J. Zhang, Y. Wang, "Missing Value Imputation for Traffic-Related Time Series Data Based on a Multi-View Learning Method", IEEE Transactions on Intelligent Transportation Systems, vol.20, pp. 2933 - 2943, 2019. [DOI:10.1109/TITS.2018.2869768]
23. [23] A. McLinden, V. Fioletov, W. Shephard, N. Krotkov, "Space-based detection of missing sulfur dioxide sources of global air pollution", Nature Geoscience, vol.9, pp. 496-500, 2016. [DOI:10.1038/ngeo2724]
24. [24] R. Mahmoudvand, P. Canas, "Missing value imputation in time series using Singular Spectrum Analysis", International Journal of Energy and Statistics, vol. 04,165005, 2016. [DOI:10.1142/S2335680416500058]
25. [25] N. Bokde, W. Beck, "A novel imputation methodology for time series based on pattern sequence forecasting", Pattern Recognition Letters, vol.116, pp.88-96, 2018. [DOI:10.1016/j.patrec.2018.09.020] [PMID] [PMCID]
26. [26] T.T. Hong Phan, E. Poisson Caillault, A. Lefebvre, A. Bigand, "Dynamic Time Warping-based imputation for univariate time series data", Pattern Recognition Letters, 2017.
27. [27] Z. Che, S. Purushotham, K. Cho, D. Sontag, Y. Liu."Recurrent Neural Networks for Multivariate Time Series with Missing Values", Scientific reports, vol.6085, pp.85-99, 2018. [DOI:10.1038/s41598-018-24271-9] [PMID] [PMCID]
28. [28] W.S. David, Wong. "Interpolation: Inverse‐Distance Weighting", The International Encyclopedia of Geography, pp.156-173, 2017.
29. [29] G. Mei, N. Xu & L. Xu, "Improving GPU-accelerated adaptive IDW interpolation algorithm using fast kNN search", pp.1389, 2016. [DOI:10.1186/s40064-016-3035-2] [PMID] [PMCID]
30. [30] J. Pratama, H. Pramoedyo, R. Fitriani, "comparison of inverse distance weighted and natural neighbor interpolation method at air temperature data in malang region", Cauchy, vol.5, pp.48-54, 2018. [DOI:10.18860/ca.v5i2.4722]
31. [31] S. Aghabozorgi, A. SeyedShirkhorshidi, T. YingWah,"Time-seriesclustering-A decadereview", Information Systems, vol.53, pp.16-38, 2015. [DOI:10.1016/j.is.2015.04.007]
32. [32] P. Roelofsen, "Time series clustering", Master thesis Business Analytic, Vrije Universiteit Amsterdam, 2018.
33. [33] Z. Bankó, J. Abonyi, "Correlation based dynamic time warping of multivariate time series", Expert Systems with Applications, vol.39, no.17, pp.12814-12823, 2012. [DOI:10.1016/j.eswa.2012.05.012]
34. [34] Guanyu Wang, "A Comparative Study of Cuckoo Algorithm and Ant Colony Algorithm in Optimal Path Problems", MATEC Web of Conferences 232, 03003, 2018. [DOI:10.1051/matecconf/201823203003]
35. [35] M. Jalal, M. Goharzay, "Cuckoo search algorithm for applied structural and design optimization: float system for experimental setups", Computational Design and Engineering, vol.6, no.159-172, 2018. [DOI:10.1016/j.jcde.2018.07.001]
36. [36] J. Tang, G. Zhang, Y. Wang, H. Wang, F. Liu, "A hybrid approach to integrate fuzzy C-means based imputation method with genetic algorithm for missing traffic volume data estimation", Transportation Research Part C: Emerging Technologies, vol.51, no. 29-40, 2015. [DOI:10.1016/j.trc.2014.11.003]
37. [37] W.L. Junger, A.P. de Leon, "Imputation of missing data in time series for air pollutants", Atmospheric Environment, vol. 102, pp. 96-104.2015. [DOI:10.1016/j.atmosenv.2014.11.049]
38. [38] L. Folguera, J. Zupan, D. Cicerone, J.F. Magallanes, "Self-organizing maps for imputation of missing data in incomplete data matrices", Chemometrics and Intelligent Laboratory Systems, vol. 143, pp.146-151,2015. [DOI:10.1016/j.chemolab.2015.03.002]
39. [39] T.T. Hong Phan, E. Poisson Caillault, A. Lefebvre, A. Bigand, "Dynamic Time Warping-based imputation for univariate time series data", Pattern Recognition Letters S0167-8655(17)30275-1, 2017.
40. [40] N. Bokde, M. W. Beck, F. Marttinez," A novel imputation methodology for time series based on pattern sequence forecasting", Pattern Recognition Letters, pp. 88-96, 2018. [DOI:10.1016/j.patrec.2018.09.020] [PMID] [PMCID]
41. [41] T.T. Hong Phan, A. Bigand, É. P. Caillault," A New Fuzzy Logic-Based Similarity Measure Applied to Large Gap Imputation for Uncorrelated Multivariate Time Series", Computational Intelligence and Soft Computing, pp. 1-15, 2018. [DOI:10.1155/2018/9095683]
42. [42] J. Tang, G. Zhang, Y. Wang, H. Wang," A hybrid approach to integrate fuzzy C-means based imputation method with genetic algorithm for missing traffic volume data estimation", Transportation Research, vol. 51, pp. 29-40, 2015. [DOI:10.1016/j.trc.2014.11.003]
43. [43] S. Sridevi, S. Rajaram, C. Parthiban, S. SibiArasan, C. Swadhikar, "Imputation for the Analysis of Missing Values and Prediction of Time Series Data", International Conference on Recent Trends in Information Technology,2011. [DOI:10.1109/ICRTIT.2011.5972466]
44. [44] C. O. Resende, A. Santana, F. Lobato, "Time series imputation using genetic programming and Lagrange interpolation", 5th Brazilian Conference on Intelligent Systems, 2016. [DOI:10.1109/BRACIS.2016.040]
45. [45] Y. Jane Nancya, H.Nehemiah Khannaa, K.Arputharaj, "Imputing missing values in unevenly spaced clinical time series data to build an effective temporal classification framework", vol.112, pp. 63-79, 2017. [DOI:10.1016/j.csda.2017.02.012]
46. [46] S. Aghabozorgi, A. SeyedShirkhorshidi, T. YingWah,"Time-seriesclustering-A decadereview", Information Systems, vol.53, pp.16-38, 2015. [DOI:10.1016/j.is.2015.04.007]
47. [47] P. Roelofsen, "Time series clustering", Master thesis Business Analytic, Vrije Universiteit Amsterdam, 2018.
48. [48] C. Cassisi, P. Montalto, M. Aliotta, A. Cannata, A. Pulvirenti, "Similarity measures and dimensionality reduction techniques for time series data mining", In A. Karahoca (Ed.), Advances in Data Mining Knowledge Discovery and Applications, Chapter 03, pp.71 - 96, 2012. [DOI:10.5772/49941]
49. [49] Aach, J. and G. M. Church. "Aligning gene expression time series with time warping algorithms", Bioinformatics, vol.17, no.6, pp. 495-508, 2001. [DOI:10.1093/bioinformatics/17.6.495] [PMID]
50. [50] T. Gorecki, "Classification of time series using combination of dtw and lcss dissimilarity measures", Communications in Statistics, Simulation and Computation, pp.1-14, 2017. [DOI:10.1080/03610918.2017.1280829]
51. [51] Y. Chen, X. Liu, X. Li, X. Liu, Y. Yao, G. Hu, F. Pei. "A dynamic time warping (DTW) distance based k -medoids method". Landscape and Urban Planning, vol.160, pp.48-60, 2017. [DOI:10.1016/j.landurbplan.2016.12.001]
52. [52] Kanungo, T., Mount, D. M., Netanyahu, N. S., Piatko, C. D., Silverman, R., & Wu, A. Y." An efficient k-means clustering algorithm: analysis and implementation", IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.24, pp.881-892.2002. [DOI:10.1109/TPAMI.2002.1017616]
53. [53] Celebi, M. E., H. A. Kingravi, and P. A. Vela "A comparative study of efficient initialization methods for the k-means clustering algorithm". Expert Syst, Appl. 40(1), 200-210.2003. [DOI:10.1016/j.eswa.2012.07.021]
54. [54] R. Rajabioun, "Cuckoo Optimization Algorithm", Applied Soft Computing, Vol.11, No.8, pp. 5508- 5518, 2011. [DOI:10.1016/j.asoc.2011.05.008]
55. [55] F. Petitjean, A. Ketterlin, P. Gancarski, "A global averaging method for dynamic time warping, with applications to clustering", Pattern Recognition, vol. 44, no.3, pp. 678-693,2011. [DOI:10.1016/j.patcog.2010.09.013]
56. [56] M.Lichman, "UCI machine learning repository". http://archive.ics.uci.edu/ml .2013.
57. [57] W.L. Junger, A.P. de Leon, "Imputation of missing data in time series for air pollutants", Atmospheric Environment, vol.102, pp. 96-104,2015. [DOI:10.1016/j.atmosenv.2014.11.049]
58. [58] S.A Rahman, Y. Huang, J. Claassen, "Combining Fourier and Lagged k-Nearest Neighbor Imputation for Biomedical Time Series Data", Nathaniel Heintzman, and Samantha Kleinberg", J Biomed Inform, vol.58, pp.198-207, 2016. [DOI:10.1016/j.jbi.2015.10.004] [PMID] [PMCID]
59. [59] M. G. Rahman, M. Z. Islam, "Missing value imputation using a fuzzy clustering-based EM approach", Knowledge and Information Systems, vol.46 (2), pp. 389-422, 2016. [DOI:10.1007/s10115-015-0822-y]
60. [60] R. Deb, A. Liew. "Missing value imputation for the analysis of incomplete traffic accident data, " Information Sciences, vol.339, pp274-289 .2016. [DOI:10.1016/j.ins.2016.01.018]
61. [61] M.E. Quinteros, S. Lu, C. BlazquezCárdenas-R, J.P., X. Ossa, J.-M. DelgadoSaborit, R.M. Harrison, P. Ruiz-Rudolph, "Use of data imputation tools to reconstruct incomplete air quality datasets: A case-study in Temuco, Chile", Atmospheric Environment, 2018. [DOI:10.1016/j.atmosenv.2018.11.053]
62. [62] B. Golden, B. Grand, F. Rossi. "Mean Absolute Percentage Error for regression models", Neurocomputing, vol.192, pp.38-48. 2016. [DOI:10.1016/j.neucom.2015.12.114]
63. [63] M. Misuraca, M. Spano, S. Balbi, "BMS: An improved Dunn index for Document Clustering validation", Communications in Statistics, pp. 0361-0926, 2018. [DOI:10.1080/03610926.2018.1504968]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این تارنما متعلق به فصل‌نامة علمی - پژوهشی پردازش علائم و داده‌ها است.