1. [1] "2013 ITRS Edition." [Online]. Available: http://www.itrs.net/Links/2013ITRS/Home2013.htm. [Accessed: 02-Mar-2019].
2. [2] A. Rezaei, M. Daneshtalab, F. Safaei, and D. Zhao, "Hierarchical approach for hybrid wireless Network-on-chip in many-core era," Comput. Electr. Eng., vol. 51, pp. 225-234, Apr. 2016. [
DOI:10.1016/j.compeleceng.2015.10.007]
3. [3] P. P. Pande, C. Grecu, M. Jones, A. Ivanov, and R. Saleh, "Performance evaluation and design trade-offs for network-on-chip interconnect architectures," IEEE Trans. Comput., vol. 54, no. 8, pp. 1025-1040, Aug. 2005. [
DOI:10.1109/TC.2005.134]
4. [4] A. Shacham, K. Bergman, and L. P. Carloni, "Photonic networks-on-chip for future generations of chip multiprocessors," IEEE Trans. Comput., vol. 57, no. 9, pp. 1246-1260, Sep. 2008. [
DOI:10.1109/TC.2008.78]
5. [5] D. W. Matolak, A. Kodi, S. Kaya, D. Ditomaso, S. Laha, and W. Rayess, "Wireless networks-on-chips: Architecture, wireless channel, and devices," IEEE Wirel. Commun., vol. 19, no. 5, pp. 58-65, Oct. 2012. [
DOI:10.1109/MWC.2012.6339473]
6. [6] A. B. Kaplan, "Architectural Integration of RF-Interconnect to Enhance On-Chip Communication for Many-Core Chip Multiprocessors", PhD Thesis, Dept. of Computing Science, University of California, Los Angeles, 2008.
7. [7] D. DiTomaso, A. Kodi, D. Matolak, S. Kaya, S. Laha, and W. Rayess, "A-WiNoC: Adaptive Wireless Network-on-Chip Architecture for Chip Multiprocessors," IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 12, pp. 3289-3302, Dec. 2015. [
DOI:10.1109/TPDS.2014.2383384]
8. [8] K. Chang et al., "Performance evaluation and design trade-offs for wireless network-on-chip architectures," ACM J. Emerg. Technol. Comput. Syst., vol. 8, no. 3, pp. 1-25, Aug. 2012. [
DOI:10.1145/2287696.2287706]
9. [9] S. H. Gade and S. Deb, "HyWin: Hybrid Wireless NoC with Sandboxed Sub-Networks for CPU/GPU Architectures," IEEE Trans. Comput., vol. 66, no. 7, pp. 1145-1158, Jul. 2017. [
DOI:10.1109/TC.2016.2643668]
10. [10] A. Ganguly, K. Chang, S. Deb, P. P. Pande, B. Belzer, and C. Teuscher, "Scalable hybrid wireless network-on-chip architectures for multicore systems," IEEE Trans. Comput., vol. 60, no. 10, pp. 1485-1502, Oct. 2011. [
DOI:10.1109/TC.2010.176]
11. [11] A. Rezaei, M. Daneshtalab, M. Palesi, and D. Zhao, "Efficient Congestion-Aware Scheme for Wireless on-Chip Networks," in 2016 24th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP), 2016, pp. 742-749. [
DOI:10.1109/PDP.2016.88]
12. [12] C. Wang, W. H. Hu, and N. Bagherzadeh, "A load-balanced congestion-aware wireless network-on-chip design for multi-core platforms," Microprocess. Microsyst., vol. 36, no. 7, pp. 555-570, Oct. 2012. [
DOI:10.1016/j.micpro.2011.10.002]
13. [13] B. A. Floyd, C. M. Hung, and K. K. O, "Intra-chip wireless interconnect for clock distribution implemented with integrated antennas, receivers, and transmitters," IEEE J. Solid-State Circuits, vol. 37, no. 5, pp. 543-552, May 2002. [
DOI:10.1109/4.997846]
14. [14] D. Zhao and Y. Wang, "SD-MAC: Design and synthesis of a hardware-efficient collision-free QoS-aware MAC protocol for wireless network-on-chip," IEEE Trans. Comput., vol. 57, no. 9, pp. 1230-1245, Sep. 2008. [
DOI:10.1109/TC.2008.86]
15. [15] D. Zhao, Y. Wang, J. Li, and T. Kikkawa, "Design of multi-channel wireless NoC to improve on-chip communication capacity!," in Proceedings of the Fifth ACM/IEEE International Symposium, 2011, pp. 177-184. [
DOI:10.1145/1999946.1999975] [
PMCID]
16. [16] S. B. Lee et al., "A scalable micro wireless interconnect structure for CMPs," in Proceedings of the 15th annual international conference on Mobile computing and networking - MobiCom '09, 2009, pp. 217. [
DOI:10.1145/1614320.1614345]
17. [17] D. DiTomaso, A. Kodi, S. Kaya, and D. Matolak, "IWISE: Inter-router wireless scalable express channels for Network-on-Chips (NoCs) architecture," in Proceedings - Symposium on the High Performance Interconnects, Hot Interconnects, 2011, pp. 11-18. [
DOI:10.1109/HOTI.2011.12]
18. [18] A. Dehghani and K. Jamshidi, "A fault-tolerant hierarchical hybrid mesh-based wireless network-on-chip architecture for multicore platforms," J. Supercomput., vol. 71, no. 8, 2015. [
DOI:10.1007/s11227-015-1430-z]
19. [19] S. Deb et al., "Design of an energy-efficient CMOS-compatible NoC architecture with millimeter-wave wireless interconnects," IEEE Trans. Comput., vol. 62, no. 12, pp. 2382-2396, Dec. 2013. [
DOI:10.1109/TC.2012.224]
20. [20] A. Dehghani and K. Jamshidi, "A Novel Approach to Optimize Fault-Tolerant Hybrid Wireless Network-on-Chip Architectures," J. Emerg. Technol. Comput. Syst., vol. 12, no. 4, pp. 45:1--45:37, Mar. 2016. [
DOI:10.1145/2814572]
21. [21] R. G. Kim et al., "Wireless NoC for VFI-Enabled Multicore Chip Design: Performance Evaluation and Design Trade-Offs," IEEE Trans. Comput., vol. 65, no. 4, pp. 1323-1336, Apr. 2016. [
DOI:10.1109/TC.2015.2441721]
22. [22] J. Murray, R. Kim, P. Wettin, P. P. Pande, and B. Shirazi, "Performance evaluation of congestion-aware routing with DVFS on a millimeter-wave small-world wireless NoC," ACM J. Emerg. Technol. Comput. Syst., vol. 11, no. 2, Oct. 2014. [
DOI:10.1145/2644816]
23. [23] R. Kim, J. Murray, P. Wettin, P. P. Pande, and B. Shirazi, "An energy-efficient millimeter-wave wireless NoC with congestion-aware routing and DVFS," in Proceedings - 2014 8th IEEE/ACM International Symposium on Networks-on-Chip, NoCS 2014, 2015, pp. 192-193. [
DOI:10.1109/NOCS.2014.7008789]
24. [24] Y. Ouyang, Z. Li, K. Xing, Z. Huang, H. Liang, and J. Li, "Design of Low-Power WiNoC with Congestion-Aware Wireless Node," J. Circuits, Syst. Comput., vol. 27, no. 9, Aug. 2018. [
DOI:10.1142/S0218126618501487]
25. [25] U. Y. Ogras and R. Marculescu, "'It's a small world after all': NoC performance optimization via long-range link insertion," IEEE Trans. Very Large Scale Integr. Syst., vol. 14, no. 7, pp. 693-706, Jul. 2006. [
DOI:10.1109/TVLSI.2006.878263]
26. [26] P. Wettin, A. Vidapalapati, A. Gangul, and P. P. Pande, "Complex network-enabled robust wireless network-on-chip architectures," ACM J. Emerg. Technol. Comput. Syst., vol. 9, no. 3, pp. 1-19, Sep. 2013. [
DOI:10.1145/2491676]
27. [27] S. Cahon, N. Melab, and E.-G. Talbi, "ParadisEO: A Framework for the Reusable Design of Parallel and Distributed Metaheuristics," J. Heuristics, vol. 10, no. 3, pp. 357-380, May 2004. [
DOI:10.1023/B:HEUR.0000026900.92269.ec]
28. [28] G. M. Chiu and G. Ming, "The odd-even turn model for adaptive routing," IEEE Trans. Parallel Distrib. Syst., vol. 11, no. 7, pp. 729-738, Jul. 2000. [
DOI:10.1109/71.877831]
29. [29] O. Lysne, T. Skeie, S. A. Reinemo, and I. Theiss, "Layered routing in irregular networks," IEEE Trans. Parallel Distrib. Syst., vol. 17, no. 1, pp. 51-65, Jan. 2006. [
DOI:10.1109/TPDS.2006.12]
30. [30] R. K. V. Maeda et al., "JADE: a Heterogeneous Multiprocessor System Simulation Platform Using Recorded and Statistical Application Models," in Proceedings of the 1st International Workshop on Advanced Interconnect Solutions and Technologies for Emerging Computing Systems - AISTECS '16, 2016, pp. 1-6. [
DOI:10.1145/2857058.2857066]
31. [31] R. Manevich, L. Polishuk, I. Cidon, and A. Kolodny, "Designing single-cycle long links in hierarchical NoCs," Microprocess. Microsyst., vol. 38, no. 8, pp. 814-825, Nov. 2014. [
DOI:10.1016/j.micpro.2014.05.005]
32. [32] R. K. V. Maeda, Q. Cai, J. Xu, Z. Wang, and Z. Tian, "Fast and Accurate Exploration of Multi-level Caches Using Hierarchical Reuse Distance," in 2017 IEEE International Symposium on High Performance Computer Architecture (HPCA), 2017, pp. 145-156. [
DOI:10.1109/HPCA.2017.11] [
PMID] [
PMCID]
33. [33] A. B. Kahng, B. L. Bin Li, L.-S. P. L.-S. Peh, and K. Samadi, "ORION 2.0: A fast and accurate NoC power and area model for early-stage design space exploration," 2009 Des. Autom. Test Eur. Conf. Exhib., pp. 1-6, Apr. 2009. [
DOI:10.1109/DATE.2009.5090700]
34. [34] محبی نجمآباد جواد، مرادی مرتضی، سلامی باقر. انتخاب ویژگی پیشنهادی برای مدیریت دمای پویا در سیستمهای چندهستهای. پردازش علائم و دادهها. ۱۳۹۸; ۱۶ (۱) :۱۲۵-۱۴۲.
35. [34] J. Mohebbi, M. Moradi, B. Salami, "Proposed Feature Selection for Dynamic Thermal Management in Multicore Systems," Signal and Data Processing, . vol. 16, no 1, pp. 125-142, 2019. http://jsdp.rcisp.ac.ir/article-1-801-fa.html. [
DOI:10.29252/jsdp.16.1.125]