دوره 20، شماره 2 - ( 6-1402 )                   جلد 20 شماره 2 صفحات 112-99 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

afkarian khiaban A, Majidnezhad V. Building energy optimization using gray wolf algorithm and an artificial neural network. JSDP 2023; 20 (2) : 7
URL: http://jsdp.rcisp.ac.ir/article-1-1068-fa.html
افکاریان خیابان آیدین، مجیدنژاد وحید. بهینه‌سازی انرژی ساختمان با استفاده از الگوریتم گرگ خاکستری و شبکه عصبی مصنوعی. پردازش علائم و داده‌ها. 1402; 20 (2) :99-112

URL: http://jsdp.rcisp.ac.ir/article-1-1068-fa.html


دانشگاه آزاد شبستر
چکیده:   (876 مشاهده)
یکی از بزرگترین مشکلات پیش روی بشر تأمین انرژی با توجه به کاهش منابع و قیمت تمام شده‌ی زیاد است. سهم بزرگی از مصرف انرژی در جهان را ساختمان‌های اداری دارند. در این مقاله روش نوین مدیریت انرژی ساختمان مطرح می‌شود که به کمک شبکه‌های اینترنت اشیا میزان مصرف انرژی در ساختمان‌های اداری کنترل می‌شود. روش پیشنهادی شامل دو مرحله می‌باشد: مرحله اول با استفاده از شبکه عصبی مصنوعی و شش پارامتر دمای بیرون ساختمان، دمای نقطه تنظیم، تابش خورشید، اشغال، دمای ساعت قبل و ساعت روز به عنوان ورودی به شبکه عصبی پرسپترون داده می‌شود و خروجی این مرحله دمای درون ساختمان و میزان مصرف انرژی است. مرحله دوم با استفاده از الگوریتم گرگ خاکستری بهینه دما برای هر بخش ساختمان در هر ساعت از شبانه‌روز تعیین می‌شود. میزان مصرف انرژی و قیمت تمام شده انرژی برای ساختمان با استفاده از نرم‌افزار متلب محاسبه می‌شود که نتیجه آن کاهش چشمگیر مصرف انرژی و بهینه‌سازی قیمت تمام شده انرژی در ساختمان‌های اداری است. روش پیشنهادی کاهش مصرف انرژی 22 کیلو وات ساعت در ساعات ابتدایی صبح را نشان‌ می‌دهد
شماره‌ی مقاله: 7
متن کامل [PDF 964 kb]   (235 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: مقالات گروه امنیت اطلاعات
دریافت: 1398/6/15 | پذیرش: 1402/4/27 | انتشار: 1402/7/30 | انتشار الکترونیک: 1402/7/30

فهرست منابع
1. H., Omar, et al. "IoT-based interactive dual mode smart home automation." 2019 IEEE International Conference on Consumer Electronics (ICCE). IEEE, 2019.‏
2. C. Franco, et al.". The Internet of Things for Smart Urban Ecosystems". Springer, 2019.‏
3. K. Huh Seyoung, "Managing IoT devices using blockchain platform," in 9th international conference on advanced communication technology (ICACT), 2017. [DOI:10.23919/ICACT.2017.7890132]
4. M. Miettinen, "IoT Sentinel: Automated device-type identification for security enforcement in IoT," in IEEE 37th International Conference on Distributed Computing Systems (ICDCS), 2017. [DOI:10.1109/ICDCS.2017.283]
5. A. K. Harish "A review on modeling and simulation of building energy systems," Renewable and Sustainable Energy Reviews, vol. 56, pp. 1272-1292, 2016. [DOI:10.1016/j.rser.2015.12.040]
6. M. H. Magalhães, "Modelling the relationship between heating energy use and indoor temperatures in residential buildings through Artificial Neural Networks considering occupant behavior," Energy and Buildings , vol. 151, pp. 332-343, 2017. [DOI:10.1016/j.enbuild.2017.06.076]
7. K. Martin,A. Greene, "Prediction Model of California Residential Buildings' Energy Consumption," CSDEC 2012: Developing the Frontier of Sustainable Design, Engineering, and Construction, pp. 55-62., 2012
8. K.. Papantoniou, "Building optimization and control algorithms implemented in existing BEMS using a web based energy management and control system," Energy and Buildings, Vol.98, pp. 45-55, 2015. [DOI:10.1016/j.enbuild.2014.10.083]
9. G. Mehreen "Understanding the energy consumption and occupancy of a multi-purpose academic building," Energy and Buildings, Vol.87, pp. 155-165, 2015. [DOI:10.1016/j.enbuild.2014.11.027]
10. A. C., Menezes, et al. "Estimating the energy consumption and power demand of small power equipment in office buildings." Energy and Buildings, Vol.75, pp. 199-209, 2014.‏ [DOI:10.1016/j.enbuild.2014.02.011]
11. J. Reynolds, "A zone-level, building energy optimisation combining an artificial neural network, a genetic algorithm, and model predictive control," Energy, vol. 151, pp. 729-739, 2018. [DOI:10.1016/j.energy.2018.03.113]
12. J.Wang, y. Junqi, Y. Nan, Y. Zhang, and X. Yang. "Research on Chaotic Time Series Prediction Model for Building Energy Consumption." In IOP Conference Series: Earth and Environmental Science, vol. 242, no. 6, p. 062037. IOP Publishing, 2019. [DOI:10.1088/1755-1315/242/6/062037]
13. M. Laurent, "Multiobjective optimization of building design using TRNSYS simulations, genetic algorithm, and Artificial Neural Network." Building and Environment, vol45, pp.739-746, 2010. [DOI:10.1016/j.buildenv.2009.08.016]
14. K.Jad, Z. Alameddine, and P. Hollmuller. "Understanding and bridging the energy performance gap in building retrofit." Energy, vol.122, pp. 217-222, 2017. [DOI:10.1016/j.egypro.2017.07.348]
15. Reynolds, J., Ahmad, M. W., Rezgui, Y., & Hippolyte, J. L. ,"Operational supply and demand optimisation of a multi-vector district energy system using artificial neural networks and a genetic algorithm". Applied energy, Vol. 235, pp.699-713, 2019. [DOI:10.1016/j.apenergy.2018.11.001]
16. Ö.Lale, A. Baykasoğlu, and S. Kulluk. "A soft computing-based approach for integrated training and rule extraction from artificial neural networks: DIFACONN-miner." Applied Soft Computing, vol.10, pp. 304-317, 2010. [DOI:10.1016/j.asoc.2009.08.008]
17. R. Naveen, and C. Raghavendra. "Rule extraction from differential evolution trained radial basis function network using genetic algorithms." 2009 IEEE International Conference on Automation Science and Engineering. IEEE, 2009. [DOI:10.1109/COASE.2009.5234172]
18. W. Xin, and S. Lin. "Pruning And Retraining Method For A Convolution Neural Network." U.S. Patent Application, vol. 15, pp. 429-438, 2019.
19. Mirjalili, S., Aljarah, I., Mafarja, M., Heidari, A.A. and Faris, H., "Grey Wolf optimizer: theory, literature review, and application in computational fluid dynamics problems". Nature-inspired optimizers, pp.87-105, 2019. [DOI:10.1007/978-3-030-12127-3_6]
20. I. Aljarah, et al. "Clustering analysis using a novel locality-informed grey wolf-inspired clustering approach." Knowledge and Information Systems, vol. 62, 1-33, 2019. [DOI:10.1007/s10115-019-01358-x]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این تارنما متعلق به فصل‌نامة علمی - پژوهشی پردازش علائم و داده‌ها است.