1. [1] V. N. Murthy, E. F. Can, and R. Manmatha, "A hybrid model for automatic image annotation," in Proceedings of International Conference on Multimedia Retrieval, pp. 355-369, 2014. [
DOI:10.1145/2578726.2578774]
2. [2] S. Feng, R. Manmatha, and V. Lavrenko, "Multiple Bernoulli relevance models for image and video annotation," in Computer Vision and Pattern Recognition (CVPR), 2004.
3. [3] P. Ji, X. Gao, and X. Hu, "Automatic image annotation by combining generative and discriminant models," Neurocomputing, 2016. [
DOI:10.1016/j.neucom.2016.09.108]
4. [4] L. Ballan, T. Uricchio, L. Seidenari, and A. Del Bimbo, "A cross-media model for automatic image annotation," in Proceedings of International Conference on Multimedia Retrieval, 2014, pp. 73. [
DOI:10.1145/2578726.2578728]
5. [5] J. Jeon, V. Lavrenko, and R. Manmatha, "Automatic image annotation and retrieval using cross-media relevance models," in Proceedings of the 26th annual international ACM SIGIR conference on Research and development in information retrieval, 2003, pp. 119-126. [
DOI:10.1145/860435.860459]
6. [6] J. Li and J. Z. Wang, "Automatic linguistic indexing of pictures by a statistical modeling approach," IEEE Transactions on pattern analysis and machine intelligence, vol. 25, pp. 1075-1088, 2003. [
DOI:10.1109/TPAMI.2003.1227984]
7. [7] A. Makadia and V. Pavlovic, "Baselines for image annotation." International Journal of Computer Vision, pp. 88-105, 2010. [
DOI:10.1007/s11263-010-0338-6]
8. [8] Wang, J., Yang, J., Lv, F., Huang, T., "Locality-constrained linear coding for image classification," 2010. [
DOI:10.1109/CVPR.2010.5540018]
9. [9] M. M. Kashani and S. H. Amiri, "Leveraging deep learning representation for search-based image annotation," in Artificial Intelligence and Signal Processing Conference (AISP), 2017, pp. 156-161. [
DOI:10.1109/AISP.2017.8324073]
10. [10] V. N. Murthy, S. Maji, and R. Manmatha, "Automatic image annotation using deep learning representations," in Proceedings of the 5th ACM on International Conference on Multimedia Retrieval, 2015, pp. 603-606. [
DOI:10.1145/2671188.2749391] [
PMID]
11. [11] X. Li, T. Uricchio, L. Ballan, M. Bertini, "Socializing the semantic gap: A comparative survey on image tag assignment, refinement, and retrieval." ACM Computing Surveys (CSUR), 2016, 49(1): 14. [
DOI:10.1145/2906152]
12. [12] Q. Cheng, Q. Zhang, P. Fu, C. Tu, S. Li, "A survey and analysis on automatic image annotation," Pattern Recognition, pp. 242-259, 2018. [
DOI:10.1016/j.patcog.2018.02.017]
13. [13] D. M. Blei, A. Y. Ng, and M. I. Jordan, "Latent dirichlet allocation," Journal of machine Learning research, vol. 3, pp. 993-1022, 2003.
14. [14] F. Monay and D. Gatica-Perez, "PLSA-based image auto-annotation: constraining the latent space," in Proceedings of the 12th annual ACM international conference on Multimedia, 2004, pp. 348-351. [
DOI:10.1145/1027527.1027608]
15. [15] A. Llorente, R. Manmatha, S. Ruger, Image retrieval using markov random Fields and global image features, in Proceedings of the ACM International,Conference on Image and Video Retrieval, ACM, 2010, pp. 243-250. [
DOI:10.1145/1816041.1816078]
16. [16] Y. Xiang, X. Zhou, T.-S. Chua, C.-W. Ngo, A revisit of generative model for automatic image annotation using markov random _elds, in Computer Vision and Pattern Recognition, 2009. CVPR 2009, IEEE Conference on, IEEE, 2009, pp. 1153-1160. [
DOI:10.1109/CVPR.2009.5206518]
17. [17] I. Dimitrovski, D. Kocev, S. Loskovska, S. D_zeroski, Hierarchical annotation of medical images, Pattern Recognition 44 (10-11), pp. 2436-2449, 2011. [
DOI:10.1016/j.patcog.2011.03.026]
18. [18] J. Wang and J. Hu, Multi-label image annotation via maximum consistency, in Image Processing (ICIP), 2010 17th IEEE International Conference on, IEEE, 2010, pp. 2337-2340. [
DOI:10.1109/ICIP.2010.5649863] [
PMCID]
19. [19] H.Wang, H. Huang, C. Ding, Image annotation using the bi-relational graph of images and semantic labels, in Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on IEEE, 2011, pp. 793-800. [
DOI:10.1109/CVPR.2011.5995379] [
PMCID]
20. [20] Z. Lin, G. Ding, M. Hu, J. Wang, X. Ye, Image tag completion via image-specific and tag-specific linear sparse reconstructions, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2013, pp. 1618-1625. [
DOI:10.1109/CVPR.2013.212]
21. [21] L. Wu, R. Jin, A. K. Jain, Tag Completion for image retrieval, IEEE Trans. Pattern Anal. Mach. Intell. 35 (3), (2013), pp. 716-727. [
DOI:10.1109/TPAMI.2012.124] [
PMID]
22. [22] Z. Qin, C.-G. Li, H. Zhang, J. Guo, Improving tag matrix completion for image annotation and retrieval, in Visual Communications and Image Processing (VCIP), IEEE, 2015, pp. 1-4. [
DOI:10.1109/VCIP.2015.7457871]
23. [23] X.-Y. Jing, F. Wu, Z. Li, R. Hu, D. Zhang, Multi-label dictionary learning for image annotation, IEEE Transactions on Image Processing 25 (6) (2016),2712-2725. [
DOI:10.1109/TIP.2016.2549459] [
PMID]
24. [24] Y. Hou, Z. Lin, Image tag completion and refinement by subspace clustering and matrix completion, in Visual Communications and Image Processing(VCIP), 2015, IEEE, 2015, pp. 1-4. [
DOI:10.1109/VCIP.2015.7457875]
25. [25] Z. Lin, G. Ding, M. Hu, Y. Lin, S. S. Ge, Image tag completion via dual-view linear sparse reconstructions, Computer Vision and Image Understanding, 124 (2014) 42-60 [
DOI:10.1016/j.cviu.2014.03.012]
26. [26] K. Q. Weinberger, L. K. Saul, Distance metric learning for large margin nearest neighbor classification, Journal of Machine Learning Research, 10, pp. 207-244, 2009.
27. [27] E. P. Xing, M. I. Jordan, S. J. Russell, A. Y. Ng, Distance metric learning with application to clustering with side-information, in Advances in neural information processing systems, pp. 521-528, 2003.
28. [28] S. C. Hoi, W. Liu, M. R. Lyu, W.-Y. Ma, Learning distance metrics with contextual constraints for image retrieval, in Computer vision and pattern recognition, IEEE computer society conference, Vol. 2, 2006, pp. 2072-2078.
29. [29] Y. Verma and & C. V. Jawahar, Image annotation by propagating labels from semantic neighbourhoods. International Journal of Computer Vision, 2017, 121. 1., pp. 126-148. [
DOI:10.1007/s11263-016-0927-0]
30. [30] M. Guillaumin, T. Mensink, J. Verbeek, and C. Schmid, "Tagprop: Discriminative metric learning in nearest neighbor models for image auto-annotation," in 2009 IEEE 12th international conference on computer vision, 2009, pp. 309-316. [
DOI:10.1109/ICCV.2009.5459266]
31. [31] L. Wu, S. C. Hoi, R. Jin, J. Zhu, N. Yu, Distance metric learning from uncertain side information with application to automated photo tagging, in Proceedings of the 17th ACM international conference on Multimedia,, 2009, pp. 135-144. [
DOI:10.1145/1631272.1631293]
32. [32] A. Bar-Hillel, T. Hertz, N. Shental, D. Weinshall, Learning a Mahalanobis metric from equivalence constraints, Journal of Machine Learning Research, 6, pp. 937-965, Jun 2005.
33. [33] F. Liu, T. Xiang, T. M. Hospedales, W. Yang, C. Sun, Semantic regularisation for recurrent image annotation, in Computer Vision and Pattern Recognition (CVPR), IEEE Conference, 2017, pp. 4160-4168. [
DOI:10.1109/CVPR.2017.443] [
PMCID]
34. [34] J. Johnson, L. Ballan, L. Fei-Fei, Love the neighbors: Image annotation by exploiting image metadata, in Proceedings of the IEEE international conference on computer vision, 2015, pp. 4624-4632. [
DOI:10.1109/ICCV.2015.525]
35. [35] H.-F. Yu, P. Jain, P. Kar, I. Dhillon, Large-scale multi-label learning with missing labels, in International conference on machine learning, 2014, pp. 593-601.
36. [36] Y. Verma, C. Jawahar, Exploring svm for image annotation in presence of confusing labels, in BMVC, 2013, pp. 1-25. [
DOI:10.5244/C.27.25] [
PMID]
37. [37] B. Hariharan, L. Zelnik-Manor, M. Varma, S. Vishwanathan, Large scale max-margin multi-label classification with priors, in Proceedings of the 27th International Conference on Machine Learning (ICML-10), Citeseer, 2010, pp. 423-430.
38. [38] Y. Li, Y. Song, J. Luo, Improving pairwise ranking for multi-label image classification, in the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 3617-3625. [
DOI:10.1109/CVPR.2017.199]
39. [39] T. Lan, G. Mori, A max-margin riffled independence model for image tag ranking, in IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2013, pp. 3103-3110. [
DOI:10.1109/CVPR.2013.399]
40. [40] Y. Yang, W. Zhang, and Y. Xie, "Image automatic annotation via multi-view deep representation," Journal of Visual Communication and Image Representation, vol. 33, 2015, pp. 368-377. [
DOI:10.1016/j.jvcir.2015.10.006]
41. [41] H. K. Shooroki, M. A. Z. Chahooki, Selection of effective training instances for scalable automatic image annotation, Multimedia Tools and Applications, 2017, 76 (7) (2017), pp. 9643-9666. [
DOI:10.1007/s11042-016-3572-2]
42. [42] S. H. Amiri and M. Jamzad. "Leveraging multi-modal fusion for graph-based image annotation.", Journal of Visual Communication and Image Representation, 2018, 55, pp. 816-828. [
DOI:10.1016/j.jvcir.2018.08.012]
43. [43] R. Rad and M. Jamzad. "Image annotation using multi-view non-negative matrix factorization with a different number of basis vectors." Journal of Visual Communication and Image Representation, 2017, 46: 1-12. [
DOI:10.1016/j.jvcir.2017.03.005]
44. [44] M. M. Kalayeh, H. Idrees, and M. Shah, "NMF-KNN: Image annotation using weighted multi-view non-negative matrix factorization," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 184-191. [
DOI:10.1109/CVPR.2014.31]
45. [45] Sun, Y., Liu, Q., Tang, J., Tao, D., "Learning discriminative dictionary for group sparse representation." IEEE transactions on image processing, 2014, 23(9): 3816-3828. [
DOI:10.1109/TIP.2014.2331760] [
PMID]
46. [46] XC. Deng, X. Liu, Y. Mu, J. Li, Large-scale multi-task image labeling with adaptive relevance discovery and feature hashing, Signal Processing 112 , 2015, pp. 137-145. [
DOI:10.1016/j.sigpro.2014.07.017]
47. [47] J. Wang, G. Li, A multi-modal hashing learning framework for automatic image annotation, in IEEE Second International Conference on Data Science in Cyberspace (DSC), IEEE, 2017, pp. 14-21. [
DOI:10.1109/DSC.2017.48]
48. [48] Wang, Changhu, Shuicheng Yan, Lei Zhang, and Hong-Jiang Zhang. "Multi-label sparse coding for automatic image annotation." In 2009 IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2009, pp. 1643-1650. [
DOI:10.1109/CVPR.2009.5206866] [
PMCID]
49. [49] Q. Zhang and B. Li, 2015. Dictionary learning in visual computing. Synthesis Lectures on Image, Video, & Multimedia Processing, 8(2), pp.1-151. [
DOI:10.2200/S00640ED1V01Y201504IVM018]
50. [50] F. Wang and C. Zhang, "Label propagation through linear neighborhoods," IEEE Transactions on Knowledge and Data Engineering, vol. 20, pp. 55-67, 2008. [
DOI:10.1109/TKDE.2007.190672]
51. [51] K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image recognition,", arXiv preprint arXiv:1409.1556, 2014.
52. [52] K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770-778. [
DOI:10.1109/CVPR.2016.90] [
PMID]
53. [53] G. Huang and Z. Liu, "Densely connected convolutional networks," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 3. [
DOI:10.1109/CVPR.2017.243] [
PMCID]