1. [1] R. Socher, C. D. C. Manning, and A. Y. A. Ng, "Learning continuous phrase representations and syntactic parsing with recursive neural networks," Proc. NIPS-2010 Deep Learn. Unsupervised Featur. Learn. Work., pp. 1-9, 2010.
2. [2] R. Socher, C. Manning, B. Huval, and A. Ng, "Semantic compositionality through recursive matrix-vector spaces," in EMNLP-CoNLL '12: Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, 2012, pp. 1201-1211.
3. [3] Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin, "A Neural Probabilistic Language Model," J. Mach. Learn. Res., vol. 3, pp. 1137-1155, 2003.
4. [4] K. S. Tai, R. Socher, and C. D. Manning, "Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks," Proc. 53rd Annu. Meet. Assoc. Comput. Linguist. 7th Int. Jt. Conf. Nat. Lang. Process., pp. 1556-1566, 2015. [
DOI:10.3115/v1/P15-1150]
5. [5] N. Kalchbrenner, E. Grefenstette, and P. Blunsom, "A Convolutional Neural Network for Modelling Sentences," Acl. pp. 655-665, 2014. [
DOI:10.3115/v1/P14-1062]
6. [6] Q. V. Le and T. Mikolov, "Distributed Representations of Sentences and Documents," vol. 32, pp. 1188-1196, 2014.
7. [7] J. Märkle-Huß, S. Feuerriegel, and H. Prendinger, "Improving Sentiment Analysis with Document-Level Semantic Relationships from Rhetoric Discourse Structures," in Proceedings of the 50th Hawaii International Conference on System Sciences, 2017, pp. 1142-1151. [
DOI:10.24251/HICSS.2017.135]
8. [8] A. Hogenboom, F. Frasincar, F. de Jong, and U. Kaymak, "Using rhetorical structure in sentiment analysis," Commun. ACM, vol. 58, no. 7, pp. 69-77, 2015. [
DOI:10.1145/2699418]
9. [9] D. Marcu, "Discourse Trees are Good Indicators of Importance in Text," in Advances in Automatic Text Summarization, 1999, pp. 123-136.
10. [10] W. C. Mann and S. A. Thompson, "Rhetorical Structure Theory: Toward a functional theory of text organization," Text, vol. 8, no. 3, pp. 243-281, 1988. [
DOI:10.1515/text.1.1988.8.3.243]
11. [11] D. Noel, Towards a functional characterization of the news of the BBC World Service. 1986.
12. [12] B. A. Fox, Discourse Structure and Anaphora: Written and Conversational English. Cambridge University Press, 1993.
13. [13] R. Salakhutdinov and G. Hinton, "Semantic hashing," Int. J. Approx. Reason., vol. 50, no. 7, pp. 969-978, 2009. [
DOI:10.1016/j.ijar.2008.11.006]
14. [14] Q. Wang, D. Zhang, and L. Si, "Semantic hashing using tags and topic modeling," in Proceedings of the 36th international ACM SIGIR conference on Research and development in information retrieval - SIGIR '13, 2013, p. 213. [
DOI:10.1145/2484028.2484037]
15. [15] M. A. Livermore, F. Dadgostari, M. Guim, P. Beling, and D. Rockmore, "Law Search as Prediction," Virginia Public Law Leg. Theory Res. Pap., no. 2018-61, 2018.
16. [16] P. Huang et al., "Learning Deep Structured Semantic Models for Web Search using Clickthrough Data," 22nd ACM Int. Conf. Conf. Inf. Knowl. Manag., pp. 2333-2338, 2013. [
DOI:10.1145/2505515.2505665]
17. [17] J. Mueller, "Siamese Recurrent Architectures for Learning Sentence Similarity," Proc. 30th Conf. Artif. Intell. (AAAI 2016), no. 2012, pp. 2786-2792, 2016. [
DOI:10.1609/aaai.v30i1.10350]
18. [18] C. Lioma, B. Larsen, and W. Lu, "Rhetorical Relations for Information Retrieval," in Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2012, pp. 931-940. [
DOI:10.1145/2348283.2348407]
19. [19] Y. Ji and N. Smith, "Imported from Neural Discourse Structure for Text Categorization. (arXiv:1702.01829v1 [cs.CL]) http://arxiv.org/abs/1702.01829," Preprint, 2017. [
DOI:10.18653/v1/P17-1092]
20. [20] W. Yin, H. Schütze, B. Xiang, and B. Zhou, "Abcnn: Attention-based convolutional neural network for modeling sentence pairs," arXiv Prepr. arXiv1512.05193, 2015.
21. [21] and A. I. Zhiguo Wang, Haitao Mi, "Semi-supervised clustering for short text via deep representation learning," in The 20th SIGNLL Conference on Computational Natural Language Learning (CoNLL), 2016.
22. [22] S. R. Bowman, L. Vilnis, O. Vinyals, A. M. Dai, R. Jozefowicz, and S. Bengio, "Generating sentences from a continuous space," arXiv Prepr. arXiv1511.06349, 2015. [
DOI:10.18653/v1/K16-1002] [
]
23. [23] P. Bhatia, Y. Ji, and J. Eisenstein, "Better Document-level Sentiment Analysis from RST Discourse Parsing," Emnlp, no. September, pp. 2212-2218, 2015. [
DOI:10.18653/v1/D15-1263]
24. [24] M. Taboada, K. Voll, and J. Brooke, "Extracting sentiment as a function of discourse structure and topicality," Tech. Rep., vol. 20, pp. 1-22, 2008.
25. [25] Y. Liu and M. Lapata, "Learning Structured Text Representations," arXiv Prepr. arXiv1705.09207, 2017.
26. [26] M. Kraus and S. Feuerriegel, "Sentiment analysis based on rhetorical structure theory: Learning deep neural networks from discourse trees," arXiv Prepr. arXiv1704.05228, 2017.
27. [27] C. D. Manning, P. Ragahvan, and H. Schutze, An Introduction to Information Retrieval, no. c. 2009.
28. [28] T. Mikolov, K. Chen, G. Corrado, and J. Dean, "Distributed Representations of Words and Phrases and their Compositionality arXiv : 1310 . 4546v1 [ cs . CL ] 16 Oct 2013," arXiv Prepr. arXiv1310.4546, pp. 1-9, 2013.
29. [29] J. Pennington, R. Socher, and C. D. Manning, "GloVe: Global Vectors for Word Representation," Proc. 2014 Conf. Empir. Methods Nat. Lang. Process., pp. 1532-1543, 2014. [
DOI:10.3115/v1/D14-1162]
30. [30] R. Socher, "Recursive Deep Learning for Natural Language Processing and Computer Vision," PhD thesis, no. August, 2014.
31. [31] Y. Ji and J. Eisenstein, "Representation Learning for Text-level Discourse Parsing," Proc. 52nd Annu. Meet. Assoc. Comput. Linguist., pp. 13-24, 2014. [
DOI:10.3115/v1/P14-1002]
32. [32] G. Salton and C. Buckley, "Term-weighting approaches in automatic text retrieval," Inf. Process. Manag., vol. 24, no. 5, pp. 513-523, 1988. [
DOI:10.1016/0306-4573(88)90021-0]
33. [33] D. M. Blei, A. Y. Ng, and M. I. Jordan, "Latent Dirichlet Allocation David," J. Mach. Learn. Res., vol. 3, no. Jan, pp. 993-1022, 2003.
34. [34] S. T. Dumais, G. W. Furnas, T. K. Landauer, S. Deerwester, and R. Harshman, "Using latent semantic analysis to improve access to textual information," in Proceedings of the SIGCHI conference on Human factors in computing systems - CHI '88, 1988, pp. 281-285. [
DOI:10.1145/57167.57214]
35. [35] C. Goller and A. Kuchler, "Learning task-dependent distributed representations by backpropagation through structure," Proceedings of International Conference on Neural Networks (ICNN'96), vol. 1. pp. 347-352, 1996.
36. [36] M. Morey, P. Muller, and N. Asher, "How much progress have we made on RST discourse parsing? A replication study of recent results on the RST-DT," Emnlp, pp. 1330-1335, 2017. [
DOI:10.18653/v1/D17-1136]