1. [1] S. Engelborghs, R. D'hooge, and P. De Deyn, "Pathophysiology of epilepsy," Acta neurologica belgica, vol.100, pp. 201-213, .2000
2. [2] E. Alickovic, J. Kevric, and A. Subasi, "Performance evaluation of empirical mode decomposition, discrete wavelet transform, and wavelet packed decomposition for automated epileptic seizure detection and prediction," Biomedical signal processing and control, vol. 39, pp. 94-102, .2018 [
DOI:10.1016/j.bspc.2017.07.022]
3. [3] E. B. Assi, D. K. Nguyen, S. Rihana, and M. Sawan, "Towards accurate prediction of epileptic seizures: A review," Biomedical Signal Processing and Control, vol. 34, pp. 144-157, .2017 [
DOI:10.1016/j.bspc.2017.02.001]
4. [4] H. O. Luders, "Textbook of epilepsy surgery: CRC Press", 2008 [
DOI:10.3109/9780203091708]
5. [5] A. S. Zandi, R. Tafreshi, M. Javidan, and G. A. Dumont, "Predicting epileptic seizures in scalp EEG based on a variational Bayesian Gaussian mixture model of zero-crossing intervals," IEEE Transactions on Biomedical Engineering, vol. 60, pp. 1401-1413, 2013. [
DOI:10.1109/TBME.2012.2237399] [
PMID]
6. [6] C. Teixeira, B. Direito, H. Feldwisch-Drentrup, M. Valderrama, R. Costa, C. Alvarado-Rojas, et al., "EPILAB: A software package for studies on the prediction of epileptic seizures," Journal of Neuroscience Methods, vol. 200, pp. 257-271, .2011 [
DOI:10.1016/j.jneumeth.2011.07.002] [
PMID]
7. [7] H. G. Daoud, A. M. Abdelhameed, and M. Bayoumi, "Automatic epileptic seizure detection based on empirical mode decomposition and deep neural network," in 2018 IEEE 14th International Colloquium on Signal Processing & Its Applications (CSPA), pp. 182-186, 2018 [
DOI:10.1109/CSPA.2018.8368709]
8. [8] M. Winterhalder, B. Schelter, T. Maiwald, A. Brandt, A. Schad, A. Schulze-Bonhage, et al., "Spatio-temporal patient-individual assessment of synchronization changes for epileptic seizure prediction," Clinical neurophysiology, vol. 117, pp. 2399-2413, .2006 [
DOI:10.1016/j.clinph.2006.07.312] [
PMID]
9. [9] C. Guerrero-Mosquera, A. M. Trigueros, and A. Navia-Vazquez, "EEG signal processing for epilepsy," in Epilepsy-Histological, electroencephalographic and psychological aspects, ed: IntechOpen, .2012 [
DOI:10.5772/31609]
10. [10] J. Gotman and P. Gloor, "Automatic recognition and quantification of interictal epileptic activity in the human scalp EEG," Electroencephalography and clinical neurophysiology, vol. 41, pp. 513-529, .1976 [
DOI:10.1016/0013-4694(76)90063-8] [
PMID]
11. [11] J. Gotman, "Automatic recognition of epileptic seizures in the EEG," Electroencephalography and clinical Neurophysiology, vol. 54, pp. 530-540, .1982 [
DOI:10.1016/0013-4694(82)90038-4] [
PMID]
12. [12] G. Harding, "An automated seizure monitoring system for patients with indwelling recording electrodes," Electroencephalography and clinical Neurophysiology, vol. 86, pp. 428- 437, .1993 [
DOI:10.1016/0013-4694(93)90138-L] [
PMID]
13. [13] S. Mousavi, M. Niknazar, and B. V. Vahdat, "Epileptic seizure detection using AR model on EEG signals," in 2008 Cairo International Biomedical Engineering Conference, 2008, pp. 1-4 [
DOI:10.1109/CIBEC.2008.4786067] [
PMID]
14. [14] L. Chisci, A. Mavino, G. Perferi, M. Sciandrone, C. Anile, G. Colicchio, et al., "Real-time epileptic seizure prediction using AR models and support vector machines," IEEE Transactions on Biomedical Engineering, vol. 57, pp. 1124-1132, .2010 [
DOI:10.1109/TBME.2009.2038990] [
PMID]
15. [15] S. Mohamadi, H. Amindavar, and S. A. T. Hosseini, "ARIMA-GARCH modeling for epileptic seizure prediction," in 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2017, pp. .994-998 [
DOI:10.1109/ICASSP.2017.7952305]
16. [16] M. Bozek-Juzmicki, D. Colella, and G. M. Jacyna, "Feature-based epileptic seizure detection and prediction from ECoG recordings," in Proceedings of IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis, 1994, pp. 564-567
17. [17] P.-N. Yu, S. A. Naiini, C. N. Heck, C. Y. Liu, D. Song, and T. W. Berger, "A sparse Laguerre-Volterra autoregressive model for seizure prediction in temporal lobe epilepsy," in 2016 38 th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. .1664-1667, 2016
18. [18] S. Nesaei, AR. Sharafat, " Epileptic seizure prediction based on phase synchronization analysis in time-frequency domain," in 2011 19th Iranian Conference on Electric Engineering (ICEE), pp. 3364-3369, 2011
19. [19] F. Mormann, K. Lehnertz, P. David, and C. E. Elger, "Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients," Physica D: Nonlinear Phenomena, vol. 144, pp. 358-369, .2000 [
DOI:10.1016/S0167-2789(00)00087-7]
20. [20] M. Le Van Quyen, J. Soss, V. Navarro, R. Robertson, M. Chavez, M. Baulac, et al., "Preictal state identification by synchronization changes in long-term intracranial EEG recordings," Clinical Neurophysiology, vol. 116, pp. 559-568, .2005 [
DOI:10.1016/j.clinph.2004.10.014] [
PMID]
21. [21] B. Schelter, M. Winterhalder, T. Maiwald, A. Brandt, A. Schad, A. Schulze-Bonhage, et al., "Testing statistical significance of multivariate time series analysis techniques for epileptic seizure prediction," Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 16, p. 013108, .2006 [
DOI:10.1063/1.2137623] [
PMID]
22. [22] J. R. Williamson, D. W. Bliss, D. W. Browne, and J. T. Narayanan, "Seizure prediction using EEG spatiotemporal correlation structure," Epilepsy & Behavior, vol. 25, pp. 230-238, .2012 [
DOI:10.1016/j.yebeh.2012.07.007] [
PMID]
23. [23] X. Huang, W. Wang, X. Sun, Y. Chen, L. Li, Y. Deng, et al., "Model research for epileptic prediction based on improved chaos operator of Lyapunov," in 2009 3rd International Conference on Bioinformatics and Biomedical Engineering, pp. .1-4, 2009 [
DOI:10.1109/ICBBE.2009.5163064]
24. [24] L. Tong, W. Wang, N. Zhao, and X. Huang, "The method evaluation for preictal prediction of epilepsy with strong-noise EEG and simulation of automatic drug release system," in 2010 3rd International Conference on Biomedical Engineering and Informatics, pp. .1054-1058, 2010 [
DOI:10.1109/BMEI.2010.5640543]
25. [25] S. Wang, W. A. Chaovalitwongse, and S. Wong, "A novel reinforcement learning framework for online adaptive seizure prediction," in 2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 499, 2010 [
DOI:10.1109/BIBM.2010.5706617]
26. [26] C. A. Teixeira, B. Direito, M. Bandarabadi, M. Le Van Quyen, M. Valderrama, B. Schelter, et al., "Epileptic seizure predictors based on computational intelligence techniques: A comparative study with 278 patients," Computer methods and programs in biomedicine, vol. 114, pp. 324-336 , 2014 [
DOI:10.1016/j.cmpb.2014.02.007] [
PMID]
27. [27] B. Hjorth, "EEG analysis based on time domain properties," Electroencephalography and clinical neurophysiology, vol. 29, pp. 306-310, .504, 1970 [
DOI:10.1016/0013-4694(70)90143-4] [
PMID]
28. [28] C. Sudalaimani, S. Asha, K. Parvathy, T. E. Thomas, P. Devanand, P. Sasi, et al., "Use of electrographic seizures and interictal epileptiform discharges for improving performance in seizure prediction," in 2015 IEEE Recent Advances in Intelligent Computational Systems (RAICS), 2015, pp. .229-234 [
DOI:10.1109/RAICS.2015.7488419]
29. [29] M. A. F. Harrison, I. Osorio, M. G. Frei, S. Asuri, and Y.-C. Lai, "Correlation dimension and integral do not predict epileptic seizures," Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 15, p. 033106, .2005 [
DOI:10.1063/1.1935138] [
PMID]
30. [30] L. Boubchir and B. Boashash, "Wavelet denoising based on the MAP estimation using the BKF prior with application to images and EEG signals," IEEE Transactions on signal processing, vol. 61, pp. 1880-1894, .2013 [
DOI:10.1109/TSP.2013.2245657]
31. [31] A. K. Tafreshi, A. M. Nasrabadi, and A. H. Omidvarnia, "Empirical mode decomposition in epileptic seizure prediction," in 2008 IEEE International Symposium on Signal Processing and Information Technology, pp. .275-280, 2008 [
DOI:10.1109/ISSPIT.2008.4775729]
32. [32] C. Kamath, "Automatic seizure detection based on Teager Energy Cepstrum and pattern recognition neural networks," QScience Connect, vol. 2014, p. 1, .2014 [
DOI:10.5339/connect.2014.1]
33. [33] C. Kamath, "Comparison of baseline cepstral vector and composite vectors in the automatic seizure detection using probabilistic neural networks," ISRN Biomedical engineering, vol. 2013, .2013 [
DOI:10.1155/2013/984864]
34. [34] H. Ren, J. Qu, Y. Chai, L. Huang, and Q. Tang, "Cepstrum Coefficient Analysis from Low-Frequency to High-Frequency Applied to Automatic Epileptic Seizure Detection with Bio-Electrical Signals," Applied Sciences, vol. 8, p. 1528, .2018 [
DOI:10.3390/app8091528]
35. [35] I. Osorio, M. G. Frei, and S. B. Wilkinson, "Real‐time automated detection and quantitative analysis of seizures and short‐term prediction of clinical onset," Epilepsia, vol. 39, pp. 615-627, .1998 [
DOI:10.1111/j.1528-1157.1998.tb01430.x] [
PMID]
36. [36] P. Detti, G. Z. M. de Lara, R. Bruni, M. Pranzo, F. Sarnari, and G. Vatti, "A patient-specific approach for short-term epileptic seizures prediction through the analysis of EEG synchronization," IEEE Transactions on Biomedical Engineering, vol. 66, pp. 1494-1504, 2018. [
DOI:10.1109/TBME.2018.2874716] [
PMID]
37. [37] H. Daoud and M. A. Bayoumi, "Efficient epileptic seizure prediction based on deep learning," IEEE transactions on biomedical circuits and systems, vol. 13, pp. 804-813, 2019. [
DOI:10.1109/TBCAS.2019.2929053] [
PMID]
38. [38] C. Panayiotopoulos, "Epileptic syndromes and their treatment," Neonatal Seizures, pp. 185-206, .2007
39. [39] F. Shayegh, F. Ghasemi, R. Amirfattahi, S. Sadri, K. Ansariasl, " Online single-channel seizure prediction, based on seizure gensis model of depth-EEG signals using extended Kalman filter," JSDP, pp. 3-27, 2019 [
DOI:10.29252/jsdp.15.1.3]
40. [40] L. Hao, R. Ghodadra, and N. V. Thakor, "Quantification of brain injury by EEG cepstral distance during transient global ischemia," in Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.'Magnificent Milestones and Emerging Opportunities in Medical Engineering'(Cat. No. 97CH36136), pp. .1205-1206, 1997
41. [41] M. Le Van Quyen, "Anticipating epileptic seizures: from mathematics to clinical applications," Comptes rendus biologies, vol. 328, pp. 187-198, .2005 [
DOI:10.1016/j.crvi.2004.10.014] [
PMID]
42. [42] P. Ong, Z. Zainuddin, and K. H. Lai, "A novel selection of optimal statistical features in the DWPT domain for discrimination of ictal and seizure-free electroencephalography signals," Pattern Analysis and Applications, vol. 21, pp. 515-527, .2018 [
DOI:10.1007/s10044-017-0642-7]
43. [43] S. Haykin, "Adaptive filter theory," .2015
44. [44] L. R. Rabiner and R. W. Schafer, "Introduction to digital speech processing," Foundations and Trends® in Signal Processing, vol. 1, pp. 1-194, 2007. [
DOI:10.1561/2000000001]
45. [45] M. Roessgen, A. M. Zoubir, and B. Boashash, "Modeling of newborn EEG data for seizure detection," in Advanced Signal Processing Algorithms, pp. .101-112, 1995
46. [46] P. Celka and P. Colditz, "Nonlinear nonstationary Wiener model of infant EEG seizures," IEEE Transactions on Biomedical Engineering, vol. 49, pp. 556-564, .2002 [
DOI:10.1109/TBME.2002.1001970] [
PMID]
47. [47] M. Roessgen, A. M. Zoubir, and B. Boashash, "Seizure detection of newborn EEG using a model-based approach," IEEE Transactions on Biomedical Engineering, vol. 45, pp. 673-685, .1998 [
DOI:10.1109/10.678601] [
PMID]
48. [48] d. S. F. Lopes, A. Hoeks, H. Smits, and L. Zetterberg, "Model of brain rhythmic activity. The alpha-rhythm of the thalamus," Kybernetik, vol. 15, p. 27, .1974 [
DOI:10.1007/BF00270757] [
PMID]
49. [49] T. Söderström and P. Stoica, "system identification," .2001