دوره 18، شماره 2 - ( 7-1400 )                   جلد 18 شماره 2 صفحات 44-29 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghaffari H R, Jalali Mojahed A. Feature extraction based on the more resolution of the classes using auxiliary classifiers. JSDP 2021; 18 (2) :29-44
URL: http://jsdp.rcisp.ac.ir/article-1-986-fa.html
غفاری حمیدرضا، جلالی مجاهد آتنا. استخراج ویژگی مبتنی بر تفکیک‌پذیری بیشتر رده‌ها با استفاده از طبقه‌‌‌بندهای کمکی. پردازش علائم و داده‌ها. 1400; 18 (2) :29-44

URL: http://jsdp.rcisp.ac.ir/article-1-986-fa.html


دانشگاه آزاد اسلامی فردوس
چکیده:   (1729 مشاهده)
طبقه‌­بندی یک روش یادگیری ماشین است که برای پیش­‌گویی برچسب یک نمونه خاص با کمترین خطا استفاده می‌­شود. در این مقاله، از توانایی پیش‌­گویی برچسب به‌کمک طبقه‌­بند برای ایجاد ویژگی جدید استفاده شده­ است. امروزه روش‌­های استخراج ویژگی زیادی مانند PCA و ICA وجود دارند که در زمینه­‌های مختلف به­‌طور وسیع استفاده می‌شوند و از هزینه بالای انتقال به فضای دیگر رنج می‌برند. در روش پیشنهادی، هدف این است که به‌کمک ویژگی جدید، قدرت تفکیک‌­پذیری بیشتری بین رده‌­های مختلف ایجاد شود و داده‌های درون رده‌­ها به یکدیگر نزدیک‌­تر و تمایز بیشتری بین داده‌های رده‌­های مختلف به وجود آید تا کارایی طبقه‌­بندها افزایش یابد. ابتدا به‌کمک یک یا چند طبقه‌­بند، برچسب پیشنهادی برای مجموعه‌­داده­ اولیه تعیین و به‌عنوان ویژگی جدید به مجموعه‌داده اولیه اضافه می­‌شود. ایجاد مدل به‌کمک مجموعه‌داده جدید انجام می­‌شود. ویژگی جدید برای مجموعه‌داده آموزش و آزمون به‌صورت جداگانه به‌دست آورده می­‌شود. آزمایش‌­ها بر روی بیست مجموعه­‌داده استاندارد انجام شده و نتایج روش پیشنهادی با نتایج دو روش بیان‌شده در کارهای مرتبط نیز مقایسه شده است. نتایج نشان می­‌دهد که روش پیشنهادی به‌طور قابل توجهی باعث بهبود دقت رده‌بندی شده است. در بخش دوم آزمایش‌ها، برای بررسی میزان مؤثر‌بودن روش پیشنهادی، قدرت تفکیک‌­پذیری ویژگی جدید بر اساس دو معیار بهره اطلاعاتی و شاخص جینی بررسی شده ­است. نتایج نشان می­‌دهد که ویژگی به‌دست‌‌آمده در روش پیشنهادی در بیشتر موارد دارای بهره اطلاعاتی بیشتر و شاخص جینی کمتری است، زیرا بی‌­نظمی کمتری دارد. در ادامه، جهت جلوگیری از افزایش ابعاد داده، ویژگی استخراج‌شده با بیش‌ترین بار اطلاعاتی، جایگزین ویژگی با کم‌ترین بار اطلاعاتی شده­ است. نتایج این مرحله نیز بیان‌گر افزایش میزان کارایی است.
متن کامل [PDF 969 kb]   (881 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: مقالات پردازش داده‌های رقمی
دریافت: 1397/12/23 | پذیرش: 1399/5/28 | انتشار: 1400/7/16 | انتشار الکترونیک: 1400/7/16

فهرست منابع
1. [1] S. J.Russell and P. Norvig, Artificial intelligence: a modern approach. Malaysia, Pearson Education Limited, 2016.
2. [2] R. P. Duin and D. M. J. Tax, "Statistical pattern recognition", In Handbook of Pattern Recognition and Computer Vision, pp. 3-24, 2005. [DOI:10.1142/9789812775320_0001]
3. [3] Guyon, S. Gunn, M.Nikravesh, L. A. Zadeh, and editors, Feature extraction: foundations and applications, Vol. 207. Springer, 2008.
4. [4] T. Cover and P. Hart, "Nearest neighbor pattern classification," IEEE transactions on information theory, vol. 13, no. 1, pp. 21-27, 1967. [DOI:10.1109/TIT.1967.1053964]
5. [5] C. Cortes and V. Vapnik, "Support-vector networks," Machine learning, vol. 20, no. 3, pp. 273-297, 1995. [DOI:10.1007/BF00994018]
6. [6] J. Showe-Taylor and N. Christianini, Support vector machines and other kernel-based learning methods, 2000. [DOI:10.1017/CBO9780511801389] [PMCID]
7. [7] J. R. Quinlan, C4. 5: programs for machine learning. Elsevier, 2014.
8. [8] B. W. Silverman and M. C. Jones, "An important contribution to nonparametric discriminant analysis and density estimation," International statistical review/revue Internationale de statistique, pp. 233-238, 1989. [DOI:10.2307/1403796]
9. [9] R. C.Barros, M. P. Basgalupp, A. C. De Carvalho, and A. A. Freitas, "A survey of evolutionary algorithms for decision-tree induction," IEEETransactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 42, no 3, pp. 291-312, 2012. [DOI:10.1109/TSMCC.2011.2157494]
10. [10] L. Breiman, "Random forests," Machine learning, vol. 45, no. 1, pp. 5-32, 2001. [DOI:10.1023/A:1010933404324]
11. [11] M.Woźniak, M.GrañaandE. Corchado, "A survey of multiple classifier systems as hybrid systems," Information Fusion, vol. 16, pp. 3-17, 2014. [DOI:10.1016/j.inffus.2013.04.006]
12. [12] H. Hotelling, "Analysis of a Complex of Statistical Variables into Principal Components," Journal of Educational Psychology, vol. 24, no. 6, pp. 417-441, 1933. [DOI:10.1037/h0071325]
13. [13] P. Comon, "Independent component analysis, a new concept?" Signal Processing, vo. 36, no. 3, pp. 287-314, 1994. [DOI:10.1016/0165-1684(94)90029-9]
14. [14] K. Fukunaga, "Introduction to Statistical Pattern Recognition," San Diego: Academic Press Inc, 1990. [DOI:10.1016/B978-0-08-047865-4.50007-7] [PMID]
15. [15] C. F. Tsai and C. Y Lin, "A triangle area based nearest neighbors approach to intrusion detection," Pattern recognition. vol. 43, no. 1, pp. 222-229, 2010. [DOI:10.1016/j.patcog.2009.05.017]
16. [16] W. C.Lin, S. W. Ke and C. F. Tsai, "CANN: An intrusion detection system based on combining cluster centers and nearest neighbors", Knowledge-based systems, no. 78, pp. 13-21, 2015. [DOI:10.1016/j.knosys.2015.01.009]
17. [17] X. Wang, C. Zhang and K. Zheng, "Intrusion detection algorithm based on density, cluster centers, and nearest neighbors", China Communications, vol. 13, no. 7, pp. 24-31, 2016. [DOI:10.1109/CC.2016.7559072]
18. [18] A. Asuncion and D. J. Newman, UCI Machine Learning Repository, University of California, 2007. https://archive.ics.uci.edu/ml/index.php
19. [19] C. W. Hsua and C. J. Lin, "A comparison of methods for multiclass support vector machines", IEEE transactions on Neural Networks, vol. 13, no. 2, pp. 415-425, 2002. [DOI:10.1109/72.991427] [PMID]
20. [20] T. T. Wong, "Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation", Pattern Recognition, vol. 48, no. 9, pp. 2839-2846, 2015. [DOI:10.1016/j.patcog.2015.03.009]
21. [21] J. T. Townsend, "Theoretical analysis of an alphabetic confusion matrix", Perception & Psychophysics, vol. 9, no. 1, pp. 40-50, 1971. [DOI:10.3758/BF03213026]
22. [22] M. Dash and H. Liu, "Consistency-based search in feature selection", Artificial intelligence, vol. 151, no. 1-2, pp. 155-176, 2003. [DOI:10.1016/S0004-3702(03)00079-1]
23. [23] J. R. Quinlan, "Induction of decision trees", Machine learning, vol. 1, no. 1, pp. 81-106, 1986. [DOI:10.1007/BF00116251]
24. [24] L. Breiman, "Classification and regression trees".Routledge, 2017. [DOI:10.1201/9781315139470]
25. [25] L. E. Raileanu and K. Stoffel, "Theoretical comparison between the gini index and information gain criteria", Annals of Mathematics and Artificial Intelligence, vol. 41, no. 1, pp.77-93, 2004. [DOI:10.1023/B:AMAI.0000018580.96245.c6]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این تارنما متعلق به فصل‌نامة علمی - پژوهشی پردازش علائم و داده‌ها است.