دوره 16، شماره 1 - ( 3-1398 )                   جلد 16 شماره 1 صفحات 125-142 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mohebbi J, Moradi M, Salami B. Proposed Feature Selection for Dynamic Thermal Management in Multicore Systems. JSDP. 2019; 16 (1) :125-142
URL: http://jsdp.rcisp.ac.ir/article-1-801-fa.html
محبی نجم‌آباد جواد، مرادی مرتضی، سلامی باقر. انتخاب ویژگی پیشنهادی برای مدیریت دمای پویا در سیستم‌های چندهسته‌ای. پردازش علائم و داده‌ها. 1398; 16 (1) :125-142

URL: http://jsdp.rcisp.ac.ir/article-1-801-fa.html


دانشگاه آزاد اسلامی واحد قوچان
چکیده:   (388 مشاهده)
افزایش تعداد هسته‌­ها، به‌منظور افزایش توان محاسباتی یک سیستم چندهسته‌­ای، منجر به افزایش دمای پردازنده می‌­شود. یکی از راه‌کارهای معمول برای کاهش دما، روش­‌های کنش‌­گراست. این روش‌­ها، با پیش‌­بینی دما پیش از رسیدن به دمای حدآستانه، مدیریت دما را انجام می‌دهند. در این مقاله، اثر استفاده از ویژگی­‌های مناسب برای مدیریت دمای پردازنده موردتوجه قرار گرفته است. برای مدیریت دما، سه مدل، به‌ترتیب برای پیش‌­بینی دما، پیش‌بینی پاسخ دمایی و کنترل دما پیشنهاد شده است. در این راستا، از شبکه عصبی پرسپترون چندلایه‌­ای برای پیش­‌بینی دما و پاسخ دمایی و از سامانه استنتاج عصبی-فازی وفقی به‌منظور مدیریت دما استفاده می­‌شود. برای آموزش هر یک از مدل­‌ها، مجموعه داده‌­ای با تنوع بالا از حالات مختلف دمایی پردازنده، ایجاد و تعدادی از ویژگی­‌های هر مجموعه، با نظارت حس‌گرها و شمارنده­‌های کارایی پردازنده ایجاد و همچنین، برای افزایش دقت هر یک از مدل­‌ها، تعدادی ویژگی با بهره­‌گیری از پردازش­‌های پیشنهادی فراهم و سپس، ویژگی­‌های مناسب برای هر یک از مدل­‌ها، با روش‌­های پیشنهادی در این مقاله انتخاب می‌­شود. ارزیابی مدل پیشنهادی برای پیش­‌بینی و کنترل دمای پردازنده برای فاصله­‌های زمانی مختلف، کمتر از 6/0 درجه سانتی‌­گراد خطا دارد.
 
متن کامل [PDF 5051 kb]   (111 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: مقالات پردازش داده‌های رقمی
دریافت: ۱۳۹۶/۱۱/۲۴ | پذیرش: ۱۳۹۷/۱۱/۶ | انتشار: ۱۳۹۸/۳/۲۰ | انتشار الکترونیک: ۱۳۹۸/۳/۲۰

فهرست منابع
1. [1] J. Kong, S. W. Chung, and K. Skadron, "Recent thermal management techniques for micro-processors," ACM Computing Surveys (CSUR), vol. 44, p. 13, 2012. [DOI:10.1145/2187671.2187675]
2. [2] A. K. Coskun, T. S. Rosing, and K. C. Gross, "Utilizing predictors for efficient thermal management in multiprocessor SoCs," IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 28, no. 10, pp. 1503-1516, 2009. [DOI:10.1109/TCAD.2009.2026357]
3. [3] A. K. Coskun, T. S. Rosing, and K. C. Gross, "Proactive temperature balancing for low cost thermal management in MPSoCs," Proc. IEEE/ACM International Conference on Computer-Aided Design, 2008, pp. 250-257. [DOI:10.1109/ICCAD.2008.4681582]
4. [4] R. Cochran and S. Reda, "Thermal prediction and adaptive control through workload phase detection," ACM Trans. on Design Automation of Electronic Systems (TODAES), vol. 18, no. 1, p. 7, 2013. [DOI:10.1145/2390191.2390198]
5. [5] M. Chhablani, I. Koren, and C. M. Krishna, "Online Inertia-Based Temperature Estimation for Reliability Enhancement," Journal of Low Power Electronics, vol. 12, no. 3, pp. 159-171, 2016. [DOI:10.1166/jolpe.2016.1444]
6. [6] M. Zaman, A. Ahmadi, and Y. Makris, "Workload characterization and prediction: A pathway to reliable multi-core systems," Proc. International On-Line Testing Symposium (IOLTS), pp. 116-121, 2015. [DOI:10.1109/IOLTS.2015.7229843]
7. [7] M. Stockman, M. Awad, H. Akkary, and R. Khanna, "Thermal status and workload predict-tion using support vector regression," Proc. International Conference on Energy Aware Computing, 2012, pp. 1-5. [DOI:10.1109/ICEAC.2012.6471027]
8. [8] Y. Ge, Q. Qiu, and Q. Wu, "A multi-agent framework for thermal aware task migration in many-core systems," IEEE Trans. on Very Large Scale Integration (VLSI) Systems, vol. 20, no. 10, pp. 1758-1771, 2012. [DOI:10.1109/TVLSI.2011.2162348]
9. [9] P. Kumar and D. Atienza, "Neural network based on-chip thermal simulator," Proc. Circuits and Systems (ISCAS), pp. 1599-1602, 2010. [DOI:10.1109/ISCAS.2010.5537439]
10. [10] A. Vincenzi, A. Sridhar, M. Ruggiero, and D. Atienza, "Fast thermal simulation of 2D/3D integrated circuits exploiting neural networks and GPUs," Proc. 17th IEEE/ACM international symposium on low-power electronics and design, pp. 151-156, 2011. [DOI:10.1109/ISLPED.2011.5993628]
11. [11] A. Sridhar, A. Vincenzi, M. Ruggiero, and D. Atienza, "Neural network-based thermal simula-tion of integrated circuits on GPUs," IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 31, no. 1, pp. 23-35, 2012. [DOI:10.1109/TCAD.2011.2174236]
12. [12] D. Li, R. Ge, and K. Cameron, "System-level, Unified In-band and Out-of-band Dynamic Thermal Control, " In International Conference Parallel Processing (ICPP), 2010, pp. 131-140. [DOI:10.1109/ICPP.2010.22]
13. [13] V. Hanumaiah and S. Vrudhula, "Energy-efficient operation of multicore processors by DVFS, task migration, and active cooling, " IEEE Transactions on Computers, vol .63, no. 2, pp. 349-360, 2014. [DOI:10.1109/TC.2012.213]
14. [14] I. Yeo, C.C. Liu, and E.J. Kim, "Predictive dynamic thermal management for multicore systems," Proc. 45th annual Design Automation Conference, 2008, pp. 734-739. [DOI:10.1145/1391469.1391658]
15. [15] G. Liu, M. Fan, and G. Quan, "Neighbor-aware dynamic thermal management for multi-core platform," Proc. Design, Automation & Test in Europe Conference & Exhibition (DATE), 2012 pp. 187-192.
16. [16] A. Kumar, L. Shang, L.S. Peh, and N. K. Jha, "HybDTM: a coordinated hardware-software approach for dynamic thermal management," Proc. Design Automation Conference, 2006, pp. 548-553. [DOI:10.1109/DAC.2006.229219]
17. [17] K.J. Lee and K. Skadron, "Using performance counters for runtime temperature sensing in high-performance processors," IEEE Inter-national Parallel and Distributed Processing Symposium, 2005.
18. [18] S. J. Lu, R. Tessier, and W. Burleson, "Dynamic On-Chip Thermal Sensor Calibration Using Performance Counters," IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 33, no. 6, pp. 853-866, 2014. [DOI:10.1109/TCAD.2014.2302384]
19. [19] K. Skadron, M. R. Stan, W. Huang, S. Velusamy, K. Sankaran-Arayanan, and D. Tarjan, "Temperature aware microarchitecture: Exten-ded discussion and results," Technical Report CS-2003-08, University of Virginia, Dept. of Computer Science, 2003.
20. [20] K. Zhang, A. Guliani, S. Ogrenci-Memik, G. Memik, K. Yoshii, R. Sankaran, and P. Beckman, "Machine Learning-Based Tem-perature Prediction for Runtime Thermal Management Across System Components, " IEEE Trans. on Parallel and Distributed Systems, vol. 29, no. 2, pp. 405-419, 2018. [DOI:10.1109/TPDS.2017.2732951]
21. [21] J. M. N. Abad, B. Salami, H. Noori, A. Soleimani and F. Mehdipour, "A neuro-fuzzy fan speed controller for dynamic thermal management of multi-core processors," In Proceedings of the 11th ACM Conference on Computing Frontiers, 2014, p. 29. [DOI:10.1145/2597917.2597958]
22. [22] J. M. N. Abad and A. Soleimani, "A neuro-fuzzy fan speed controller for dynamic management of processor fan power consumption," In Swarm Intelligence and Evolutionary Computation (CSIEC), pp. 148-153, 2016. [DOI:10.1109/CSIEC.2016.7482121]
23. [23] H. Peng, F. Long, and C. Ding, "Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy," IEEE Trans. on pattern analysis and machine intelligence, vol. 27, no. 8, pp. 1226-1238, 2005. [DOI:10.1109/TPAMI.2005.159] [PMID]
24. [24] C. Ding and H. Peng, "Minimum redundancy feature selection from microarray gene exp-ression data," Journal of bioinformatics and computational biology, vol. 3, no. 2, pp. 185-205, 2005. [DOI:10.1142/S0219720005001004] [PMID]
25. [25] lm-sensors Linux hardware monitoring [Online]. Available: http://www.lm-sensors.org, Jan 2017.
26. [26] Linux cpufreq governors, LinuxKernel [Online]. Available:https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt. Jan 2017.

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


کلیه حقوق این تارنما متعلق به فصل‌نامة علمی - پژوهشی پردازش علائم و داده‌ها است.