1. [1] C. Cassisi, A. Ferro, R. Giugno, G. Pigola, and A. Pulvirenti, "Enhancing density-based clustering: Parameter reduction and outlier detection," Information Systems, vol. 38, no. 3, pp. 317-330, 2013. [
DOI:10.1016/j.is.2012.09.001]
2. [2] X. Chen, W. Liu, H. Qiu, and J. Lai, "APSCAN: A parameter free algorithm for clustering," Pattern Recognition Letters, vol. 32, no. 7, pp. 973-986, 2011. [
DOI:10.1016/j.patrec.2011.02.001]
3. [3] H. Durnová, "Otakar Boruvka (1899-1995) and the Minimum Spanning Tree," 1998.
4. [4] M. T. Elbatta and W. M. Ashour, " A dynamic method for discovering density varied clusters," International Journal of Signal Processing, Image Processing and Pattern Recognition, vol. 6, no. 1, pp. 123-134, 2013.
5. [5] J. Esmaelnejad, J. Habibi, and S. H. Yeganeh, "A novel method to find appropriate ε for DBSCAN," in Asian Conference on Intelligent Information and Database Systems, Springer, 2010, pp. 93-102. [
DOI:10.1007/978-3-642-12145-6_10]
6. [6] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, "A density-based algorithm for discovering clusters in large spatial databases with noise," in Kdd, 1996, vol. 96, no. 34, pp. 226-231.
7. [7] R. L. Graham and P. Hell, "On the history of the minimum spanning tree problem," Annals of the History of Computing, vol. 7, no. 1, pp. 43-57, 1985. [
DOI:10.1109/MAHC.1985.10011]
8. [8]M. N. Gaonkar and K. Sawant, "AutoEpsDBSCAN: DBSCAN with Eps automatic for large dataset," International Journal on Advanced Computer Theory and Engineering, vol. 2, no. 2, pp. 11-16, 2013.
9. [9] J. Hou, H. Gao, and X. Li, "Dsets-dbscan: a parameter-free clustering algorithm," IEEE Transactions on Image Processing, vol. 25, no. 7, pp. 3182-3193, 2016. [
DOI:10.1109/TIP.2016.2559803] [
PMID]
10. [10] J. A. Hartigan and M. A. Wong, "Algorithm AS 136: A k-means clustering algorithm," Journal of the Royal Statistical Society. Series C (Applied Statistics), vol. 28, no. 1, pp. 100-108, 1979. [
DOI:10.2307/2346830]
11. [11] A. Karami and R. Johansson, "Choosing dbscan parameters automatically using differential evolution," International Journal of Computer Applications, vol. 91, no. 7, 2014. [
DOI:10.5120/15890-5059]
12. [12] Y. Lv et al., "An efficient and scalable density-based clustering algorithm for datasets with complex structures," Neurocomputing, vol. 171, pp. 9-22, 2016. [
DOI:10.1016/j.neucom.2015.05.109]
13. [13] M. Mitchell, An introduction to genetic algo-rithms. MIT press, 1998.
14. [14] S. Pourmohammadi, A. Maleki, "A Fuzzy C-means Clustering Approach for Continuous Stress Detection during Driving", JSDP; 14 (4) :129-142,2018. [
DOI:10.29252/jsdp.14.4.129]
15. [15] S. Mitra and J. Nandy, "Kddclus: A simple method for multi-density clustering," SKAD'11-Soft Computing Applications and Knowledge Discovery, pp. 72, 2011.
16. [16] G. H. Shah, "An improved DBSCAN, a density based clustering algorithm with parameter selection for high dimensional data sets," IEEE Engineering (NUiCONE), 2012 Nirma Univer-sity International Conference on, 2012, pp. 1-6. [
DOI:10.1109/NUICONE.2012.6493211]
17. [17] K. Sawant, "Adaptive methods for determining dbscan parameters," International Journal of Innovative Science, Engineering & Technology, vol. 1, no. 4, 2014.
18. [18] P. Sharma and Y. Rathi, "Efficient Density-Based Clustering Using Automatic Parameter Detection," in Proceedings of the International Congress on Information and Communication Technology, Springer, 2016, pp. 433-441. [
DOI:10.1007/978-981-10-0767-5_46]
19. [19] https://cs.joensuu.fi/sipu/datasets/
20. [20]http://archive.ics.uci.edu/ml/datasets/statlog+(heart)