دوره 9، شماره 1 - ( 6-1391 )                   جلد 9 شماره 1 صفحات 59-68 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

mehralian M A, kazem fouladi K. The Recognition of Online Handwritten Persian Characters Based on their Main Bodies Using SVM. JSDP. 2012; 9 (1) :59-68
URL: http://jsdp.rcisp.ac.ir/article-1-693-fa.html
مهرعلیان محمدامین، فولادی کاظم. بازشناسی برخط حروف مجزای دست‌نویس فارسی بر اساس تشخیص گروه بدنه اصلی با استفاده از ماشین بردار پشتیبان. پردازش علائم و داده‌ها. 1391; 9 (1) :59-68

URL: http://jsdp.rcisp.ac.ir/article-1-693-fa.html


چکیده:   (868 مشاهده)

در این مقاله روشی جدید برای بازشناسی برخط حروف مجزای فارسی ارائه شده است که با استخراج چند ویژگی ساده از دنباله نمونه‌برداری شده از حروف و استفاده از دسته‌بندی کننده‌ی ماشین بردار پشتیبان( SVM) نتایج قابل قبولی را ارئه می‌دهد. الگوریتم پیش‌پردازش استفاده شده در این کار امکان یکسان سازی ابعاد ویژگی‌ها به ازای حروف متعدد را فراهم می‌کند تا در مرحله بعدی به منظور بازشناسی به دسته‌بندی کننده ارسال شود. فرآیند بازشناسی در دو مرحله صورت می‌گیرد: در مرحله‌ی اول بدنه‌ی اصلی حرف ورودی (اولین حرکت قلم) پس از استخراج ویژگی با استفاده از دسته‌بندی کننده در قالب یکی از هجده گروه بدنه‌ی اصلی حروف، طبقه‌بندی می‌شود و سپس در مرحله‌ی دوم، موقعیت، تعداد و شکل سایر حرکت‌ها مانند نقطه و سرکش (ریزحرکت‌ها)، نوع حرف نهایی را تعیین می‌کند. به عنوان نمونه برای تشخیص حرف «ت» ابتدا گروه بدنه‌ی «ب، پ، ت، ث» تشخیص داده می‌شود و سپس وجود ریزحرکت «دونقطه» در بالای آن منجر به انتخاب «ت» از این گروه می‌شود. نهایتا در فرآیند پس‌پردازش با استفاده از تطبیق اطلاعات مربوط به بدنه‌ی اصلی و ریزحرکات سیستم به تصحیح خطاهای احتمالی موجود در مراحل قبلی پرداخته و دقت بازشناسی را افزایش می‌دهد به عنوان مثال اگر در مرحله دسته‌بندی بدنه حرف «ل» تشخیص داده شود ولی یک نقطه در بالای آن قرار داشته باشد آنگاه سیستم تشخیص خود را به حرف «ن» تغییر خواهد داد. نتایج تجربی این کار پژوهشی که بر اساس مجموعه‌ داده‌ی Online-TMU صورت گرفته است، متوسط نرخ بازشناسی بدنه‌ی اصلی را 94% نشان می‌دهد و با در نظر گرفتن پس‌پردازش‌ها بر اساس ریزحرکت‌ها این نرخ به حدود 98% می‌رسد.

متن کامل [PDF 1253 kb]   (255 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: مقالات پردازش گفتار
دریافت: ۱۳۹۱/۶/۳۱ | پذیرش: ۱۳۹۶/۱۱/۳۰ | انتشار: ۱۳۹۶/۱۱/۳۰ | انتشار الکترونیک: ۱۳۹۶/۱۱/۳۰

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


کلیه حقوق این تارنما متعلق به فصل‌نامة علمی - پژوهشی پردازش علائم و داده‌ها است.