1. [1]فیلی هشام، قادر حمیدرضا، آنالویی مرتضی. یک مدل بیزی برای استخراج باناظر گرامر زبان طبیعی. پردازش علائم و دادهها. ۱۳۹۱; ۹ (۱) :۱۹-۳۴
2. [1] Faili, H., H. Ghader, and M. Morteza Analoui, "A Bayesian Model for Supervised Grammar Induc-tion," Signal and Data Processing, 2012. 9(1), pp. 19-34.
3. [2] D., et al. Wang, "Multi-document summarization using sentence-based topic models," 2009. Association for Computational Linguistics.
4. [3] صادقی سیده ساره، وزیرنژاد بهرام. خلاصهساز متون روایی مبتنی بر جنبههای شناختی ذهن انسان. پردازش علائم و دادهها. ۱۳۹۴; ۱۲ (۲) :۸۷-۹۶
5. [3] S. S. Sadegi and B, vazir nejad, "Extractive summarization based on cognitive aspects of human mind for narrative text," Signal and Data Processing, vol.12(2), pp. 87-96, 2015
6. [4] H. Zhang and G. Zhong, "Improving short text classification by learning vector representations of both words and hidden topics," Knowledge-Based Systems, 2016. 102: pp. 76-86. [
DOI:10.1016/j.knosys.2016.03.027]
7. [5] D.M. Blei, A.Y. Ng, and M.I. Jordan, "Latent dirichlet allocation," Journal of machine Learning research, pp. 993-1022, 2003.
8. [6] H.M. Wallch, "Topic modeling: beyond bag-of-words," ACM, 2006. [
DOI:10.1145/1143844.1143967]
9. [7] C.D. Manning, et al., "Introduction to Information Retrieval," Cambridge University Press, pp. 496, 2008.
10. [8] im Walde, S.S. and A. Melinger, "An in-depth look into the co-occurrence distribution of semantic associates," Italian Journal of Linguistics, Special Issue on From Context to Meaning: Distributional Models of the Lexicon in Linguistics and Cognitive Science, 2008.
11. [9] N. Barbieri, et al., "Probabilistic topic models for sequence data," Machine learning, vol.93(1), pp. 5-29, 2013. [
DOI:10.1007/s10994-013-5391-2]
12. [10] T.L. Griffiths, M. Steyvers, and J.B. Tenenbaum, "Topics in semantic representation." Psycho-logical review, vol.114(2), pp. 211, 2007. [
DOI:10.1037/0033-295X.114.2.211] [
PMID]
13. [11] X. Wang, A. McCallum, and X. Wei. "Topical n-grams: Phrase and topic discovery, with an application to information retrieval," IEEE, 2007. [
DOI:10.1109/ICDM.2007.86] [
PMCID]
14. [12] G. Yang, et al., "A novel contextual topic model for multi-document summarization, "Expert Sys-tems with Applications, vol. 42(3), pp. 1340-1352, 2015. [
DOI:10.1016/j.eswa.2014.09.015]
15. [13] S. Jameel, W. Lam, and L. Bing, "Supervised topic models with word order structure for document classification and retrieval learning," Information Retrieval Journal, vol.18(4), pp. 283-330, 2015. [
DOI:10.1007/s10791-015-9254-2]
16. [14] Y.W. The, "A hierarchical Bayesian language model based on Pitman-Yor processes," Associa-tion for Computational Linguistics, 2006.
17. [15] H. Noji, D. Mochihashi, and Y. Miyao. "Improvements to the Bayesian Topic N-Gram Models," in EMNLP, 2013.
18. [16] I. Sato and H. Nakagawa. "Topic models with power-law using Pitman-Yor process," ACM, 2010. [
DOI:10.1145/1835804.1835890]
19. [17] Y.-S. Jeong and H.-J. Choi, "Overlapped latent Dirichlet allocation for efficient image segmenta-tion," Soft Computing, vol. 19(4), pp. 829-838. [
DOI:10.1007/s00500-014-1410-x]
20. [18] Y. Zue, J. Zhao, and K. Xu, "Word network topic model: a simple but general solution for short and imbalanced texts," Knowledge and Information Systems, pp. 1-20, 2014.
21. [19] W. Ou, Z. Xie, and Z. Lv. "Spatially Regularized Latent topic Model for Simultaneous object discovery and segmentation," in Systems, Man, and Cybernetics (SMC), 2015 IEEE International Conference on. 2015. IEEE. [
DOI:10.1109/SMC.2015.511]
22. [20] T.L. Griffiths and M. Steyvers, "Finding scientific topics," in Proceedings of the National academy of Sciences, 2004. 101(suppl 1), pp. 5228-5235. [
DOI:10.1073/pnas.0307752101] [
PMID] [
PMCID]
23. [21] T. Minka and J. Lafferty. "Expectation-propagation for the generative aspect model," Morgan Kaufmann Publishers In, 2002.
24. [22] J. Rennie, 20 Newsgroups. Available from: http://qwone.com/~jason/20Newsgroups/20news-18828.tar.gz
25. [23] G. Heinrich, "Parameter estimation for text analy-sis," University of Leipzig, Tech. Rep, 2008.
26. [24] D. Newman, et al. "Automatic evaluation of topic coherence," in Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Com-putational Linguistics. 2010. Association for Computational Linguistics.
27. [25] D. O'Callaghan, et al., "An analysis of the coherence of descriptors in topic modeling," Expert Systems with Applications, vol. 42(13), pp. 5645-5657, 2013. [
DOI:10.1016/j.eswa.2015.02.055]
28. [26] D. Mimno , et al. "Optimizing semantic coherence in topic models," Association for Computational Linguistics, 2011.
29. [27] M. Meilă, "Comparing clusterings by the variation of information, in Learning theory and kernel machines," Springer, 2003, pp. 173-187. [
DOI:10.1007/978-3-540-45167-9_14]