Volume 15, Issue 2 (9-2018)                   JSDP 2018, 15(2): 133-147 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Nezamzadeh M. An Improved Rician Noise Correction Technique from the Magnitude of Diffusion MR Images . JSDP. 2018; 15 (2) :133-147
URL: http://jsdp.rcisp.ac.ir/article-1-643-en.html
Tarbiat Modares University
Abstract:   (743 Views)

The true MR signal intensity extracted from noisy MR magnitude images is biased with the Rician noise caused by noise rectification in the magnitude calculation for low intensity pixels. This noise is more problematic when a quantitative analysis is performed based on the magnitude images with low SNR(<3.0). In such cases, the received signal for both the real and imaginary components will fluctuate around a low level (e.g. zero) often producing negative values. The magnitude calculation on such signals will rectify all negative values to produce only positive magnitudes, thereby artificially raising the average level of these pixels. The signal thus will be biased by the rectified noise. Diffusion MRI using high b-values (using strong magnetic gradients) is one the most important cases of biased Rician noise.  A technique for removing this bias from individual pixels of magnitude MR images is presented in this study. This method provides a bias correction for individual pixels using a linear equation with the correction term separated from the term to be corrected (i.e. the pixel intensity). The correction is exact when the mean and variance of the pixel intensity probability density functions are known. When accurate mean values are not available, a nearest neighbor average is used to approximate the mean in the calculation of the linear correction term. With a nine pixel nearest neighbor average (i.e. one layer of nearest neighbors) the bias correction for individual pixel intensities is accurate to within 10% error for signal to noise ratios SNR=1.0. Several different noise correction schemes from the literature are presented and compared. The new Rician bias correction presented in this work represents a significant improvement over previously published techniques. The proposed approach substantially removes the Rician noise bias from diffusion MR signal decay over an extended range of b-values from zero to very high b-values.

Full-Text [PDF 4154 kb]   (275 Downloads)    
Type of Study: Research | Subject: Paper
Received: 2017/08/17 | Accepted: 2018/05/15 | Published: 2018/09/16 | ePublished: 2018/09/16

1. [1] Whittall KP, MacKay AL, Graeb DA, Nugent RA, Li DKB, Paty DW. (1997)." In vivo measurement of T2 distributions and water contents in normal human brain." Magn Reson Med. 37, pp. 34-43. [DOI:10.1002/mrm.1910370107]
2. [2] Assaf Y, Freidlin RZ, Rohde GK, Basser PJ.(2004)."New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter." Magn Reson Med. 52, pp. 965-978. [DOI:10.1002/mrm.20274] [PMID]
3. [3] Le Bihan D. (2007)."The 'wet mind': water and functional neuroimaging." Phys Med Biol. 52, pp. R57-R90. [DOI:10.1088/0031-9155/52/7/R02] [PMID]
4. [4] Østergaard L.(2004)."Cerebral perfusion imaging by bolus tracking." Magn Reson Imaging. 15, pp. 3-9. [DOI:10.1097/00002142-200402000-00002]
5. [5] Chen CN, Hoult DI.(1989). "Biomedical magnetic resonance technology." Bristol and New York: Adam Hilger. pp.117-176.
6. [6] Hoult DI, Lauterbur PC.(1979). "The sensitivity of the zeugmatographic experiment involving human samples." J Magn Reson. 34, pp. 425-433.
7. [7] Rice SO. (1944). "Mathematical analysis of random noise. Bell System Technological Journal. 23, pp. 282-332. [DOI:10.1002/j.1538-7305.1944.tb00874.x]
8. [8] Wang Y, Lei T.(1994). "Statistical analysis of MR imaging and its applications in image modeling." In: Proceedings of the IEEE International Conference on Image Processing and Neural Networks. 1, pp. 866-870.
9. [9] Cárdenas-Blanco A, Tejos C, Irarrazaval P, Cameron IG. (2008). "Noise in magnitude magnetic resonance images." Concepts in Magnetic Resonance Part A. 32A(6), pp. 409–416. [DOI:10.1002/cmr.a.20124]
10. [10] Bernstein MA, Thomasson DM, Perman WH. (1989). "Improved detectability in low signal-to-noise ratio magnetic resonance images by means of a phase–corrected real reconstruction." Med Phys. 16, pp. 813-817. [DOI:10.1118/1.596304] [PMID]
11. [11] Henkelman RM.(1986). "Measurement of signal intensities in the presence of noise in MR images." Med Phys. 12, pp. 232-233. [DOI:10.1118/1.595711] [PMID]
12. [12] Gudbjartsson H, Patz S.(1995). "The Rician distribution of noisy MRI data." Magn Reson Med. 34, pp. 910-914. [DOI:10.1002/mrm.1910340618]
13. [13] Miller AJ, Joseph PM.(1993). "The use of power images to perform quantitative analysis on low SNR MR images." Magn Reson Imag. 11, pp. 1051-1056. [DOI:10.1016/0730-725X(93)90225-3]
14. [14] McGibney G, Smith MR. (1973). "An unbiased signal-to-noise ratio measure for magnetic resonance images." Med Phys. 20, pp. 1077-1078. [DOI:10.1118/1.597004] [PMID]
15. [15] Koay CG, Basser PJ. (2006). "Analytically exact correction scheme for signal extraction from noisy magnitude MR signals." J Magn Reson. 179, pp. 317-322. [DOI:10.1016/j.jmr.2006.01.016] [PMID]
16. [16] Cárdenas-Blanco A, Nezamzadeh M, Foottit C, Cameron I.(2007). "Accurate noise bias correction applied to individual pixels." In: Proceedings of the 15th Annual Meeting of ISMRM-ESMRMB, Berlin, Germany. pp. 657.
17. [17] Sijbers J, den Dekker AJ, Scheunders P, Van Dyck D. (1998). "Maximum-likelihood estimation of Rician distribution parameters." IEEE Trans Med Imaging. 17, pp. 357-361. [DOI:10.1109/42.712125] [PMID]
18. [18] Kingsley, PB. (2005). "Improved formulas to correct noisy low-intensity DTI data." In: Proceedings of the ISMRM Workshop on Methods for Quantitative Diffusion MRI of Human Brain. poster 52.
19. [19] Nezamzadeh M, Cameron IG.(2006). "A new Rician noise bias correction." In: Proceedings of the 14th Annual Meeting of ISMRM, Seattle, Washington, USA, pp. 346.
20. [20] Jones DK, Basser PJ. (2004). "Squashing peanuts and smashing pumpkins: How noise distorts diffusion weighted MR data." Magn Reson Med. 52, pp. 979-993. [DOI:10.1002/mrm.20283] [PMID]
21. [21] Olariu E, Cárdenas-Blanco A, Cameron, IG. (2007). "Analysis of Noise Corrected Diffusion Decay of Human Brain." In: Proceedings of the 15th Annual Meeting of ISMRM-ESMRMB, Berlin, Germany. pp. 3301.
22. [22] Gilbert G, Simard D, Beaudoin G. (2007). "Impact of improved combination of signals from array coils in diffusion tensor imaging." IEEE Trans Med Imaging. 26, 1428-1436. [DOI:10.1109/TMI.2007.907699] [PMID]
23. [23] Constantinides CD, Atalar E, McVeigh ER.(1997). "Signal-to-noise measurements in magnitude images from NMR phased arrays." Magn Reson Med. 38, pp. 852-857. [DOI:10.1002/mrm.1910380524]
24. [24] Sijbers J, Poot D, Dekker AJ, Pintjens W. (2007). "Automatic estimation of the noise variance from the histogram of a magnetic resonance image." Phys Med and Biol. 52, pp. 1335-1348. [DOI:10.1088/0031-9155/52/5/009] [PMID]
25. [25] Andersen AH.(1996). "On the Rician distribution of noisy MRI data." Magn Reson Med. 36, pp. 331-333. [DOI:10.1002/mrm.1910360222] [PMID]
26. [26] Niendorf T., Dijkhuizen R., Norris D.G., van Lookeren, Campagne M., Nicolay K. (1996). "Biexponential diffusion attenuation in various states of brain tissue: implications for diffusion weighted imagin.", Magn. Reson. Med. 36, pp. 847- 857. [DOI:10.1002/mrm.1910360607]
27. [27] Haldar PJ.,Wedeen VJ., Nezamzadeh M., Dai G. Weiner MW., Schuff N., Liang ZP.(2013) "Improved diffusion imaging through SNR-enhancing joint reconstruction."Magn Reson Med. 69(1), pp.227-289. [DOI:10.1002/mrm.24229] [PMID] [PMCID]
28. [28] Liu RW, Shi L, Yu SC, Wang D.(2015). "A two-step optimization approach for nonlocal total variation-based Rician noise reduction in magnetic resonance images." Med Phys. 42(9), pp. 5167-87. [DOI:10.1118/1.4927793] [PMID]
29. [29] R. Riji • Jeny Rajan • Jan Sijbers • Madhu S. Nair. (2015). "Iterative bilateral filter for Rician noise reduction in MR images." Signal, Image and Video Processing. 9(7), pp. 1543.
30. [30] Baselice F., Ferraioli G., Pascazio V. (2017)."A 3D MRI denoising algorithm based on Bayesian theory.", BioMed Eng OnLine, 16: 25, pp.1-19. [DOI:10.1186/s12938-017-0319-x]
31. [31] Pal Ch., Das P., Chakrabarti A., Ghosh R.(2017). "Rician noise removal in magnitude MRI images using efficient anisotropic diffusion filtering." Int.J.Imaging Syst. Technol. 27, pp. 248–264 [DOI:10.1002/ima.22230]

Add your comments about this article : Your username or Email:

Send email to the article author

© 2015 All Rights Reserved | Signal and Data Processing