دوره 15، شماره 1 - ( 3-1397 )                   جلد 15 شماره 1 صفحات 41-54 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Biglari M, Soleimani A, Hassanpour H. Using Discriminative Parts for Vehicle Make and Model Recognition . JSDP. 2018; 15 (1) :41-54
URL: http://jsdp.rcisp.ac.ir/article-1-574-fa.html
بیگلری محسن، سلیمانی علی، حسن پور حمید. شناسایی نوع و مدل وسیله نقلیه با استفاده از مجموعه بخش‌های متمایز‌کننده. پردازش علائم و داده‌ها. 1397; 15 (1) :41-54

URL: http://jsdp.rcisp.ac.ir/article-1-574-fa.html


دانشگاه صنعتی شاهرود
چکیده:   (386 مشاهده)

طبقه­بندی دقیق اشیا (Fine-Grained Recognition) چالشی است که جامعه بینایی ماشین در حال حاضر با آن روبه­رو شده است. در این نوع طبقه­بندی گروه کلی شیء مشخص بوده و هدف تعیین زیرگروه دقیق آن است؛ شناسایی نوع و مدل وسیله نقلیه (VMMR) نیز در این حوزه قرار می­گیرد. این مسئله به‌دلیل وجود تعداد طبقه‌های زیاد، تفاوت درون‌طبقه‌ای بسیار و تفاوت بین طبقه‌ای کم از مسائل طبقه­بندی دشوار به‌شمار می­رود. در این مقاله روشی مبتنی بر بخش برای شناسایی نوع و مدل خودرو پیشنهاد شده است. این روش برای طبقه­بندی طبقه‌های مختلف خودرو، ابتدا بخش­های متمایز‌کننده هر یک را به‌صورت خودکار می­یابد؛ سپس با استخراج ویژگی از این بخش­ها و رابطه هندسی بین آن­ها، یک مدل می­آموزد. وزن بخش­های مختلف هر مدل به‌صورت پویا و با استفاده از مجموعه داده­های آموزشی یاد گرفته می­شود. سامانه پیشنهادی با ترکیب این مدل­ها به شناسایی طبقه خودرو می­پردازد. برای آزمایش سامانه پیشنهادی و به‌دلیل عدم وجود مجموعه داده به اشتراک گذاشته‌شده، یک مجموعه داده با بیش از 5000 خودرو از 28 طبقه مختلف تهیه و به‌صورت کامل علامت­گذاری شده است. نتیجه آزمایش‌های انجام‌شده بر روی این تصاویر که دارای تغییرات روشنایی زیاد و تغییرات زاویه اندک هستند، نشان از دقت بالای روش پیشنهادی دارد.
 

متن کامل [PDF 5553 kb]   (144 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: مقالات پردازش تصویر
دریافت: ۱۳۹۵/۵/۲۰ | پذیرش: ۱۳۹۶/۳/۲۰ | انتشار: ۱۳۹۷/۳/۲۳ | انتشار الکترونیک: ۱۳۹۷/۳/۲۳

فهرست منابع
1. [1] Sun, Z., George, B., Ronald, M. "On-Road Vehicle Detection: A Review.", IEEE Transac-tions on Pattern Analysis and Machine Intellig-ence., vol. 28, no. 5, pp. 694–711, 2006. [DOI:10.1109/TPAMI.2006.104] [PMID]
2. [2] Li, X., Guo, X. "A HOG Feature and SVM Based Method for Forward Vehicle Detection with Single Cam-era.", 5th International Conference on Intelligent Human-Machine Systems and Cybernetics, pp. 263–266, 2013.
3. [3] Yousaf, K., Iftikhar, A., Javed, A. "Comparative Analysis of Automatic Vehicle Classification Techniques: A Survey.", International Journal of Image, Graphics and Signal Processing., vol. 4, no. 9, pp. 52, 2012. [DOI:10.5815/ijigsp.2012.09.08]
4. [4] Ambardekar, A., Nicolescu, M., Bebis, G., Nicol-escu, M. "Vehicle Classification Framework: A Comparative Study.", EURASIP Journal on Image and Video Processing., vol. 2014, no. 1, pp. 1–13, 2014. [DOI:10.1186/1687-5281-2014-29]
5. [5] Zhang, B. "Reliable Classification of Vehicle Types Based on Cascade Classifier Ensembles.", IEEE Transactions on Intelligent Transportation Systems., vol. 14, no. 1, pp. 322–332, 2013. [DOI:10.1109/TITS.2012.2213814]
6. [6] Dong, Z., Jia, Y. "Vehicle Type Classification Using Distributions of Structural and Appearance-Based Features.", IEEE International Conference on Image Processing, pp. 4321–4324, 2013. [DOI:10.1109/ICIP.2013.6738890]
7. [7] Choo, S., Mokhtarian, P.L. "What Type of Vehicle Do People Drive? The Role of Attitude and Lifestyle in Influencing Vehicle Type Choice.", Transportation Research Part A: Policy and Practice., vol. 38, no. 3, pp. 201–222, 2004. [DOI:10.1016/j.tra.2003.10.005]
8. [8] Conos, M. "Recognition of Vehicle Make from a Frontal View.", Master Thesis, Czech Tech, 2007.
9. [9] Dlagnekov, L. "Video-Based Car Surveillance: License Plate, Make, and Model Recognition.", Master Thesis, University of California, San Diego, 2005.
10. [10] Negri, P., Clady, X., Milgram, M., Poulenard, R. "An Oriented-Contour Point Based Voting Algorithm for Vehicle Type Classification.", 18th International Conference on Pattern Recognition, pp. 574–577, 2006. [DOI:10.1109/ICPR.2006.264]
11. [11] Clady, X., Negri, P., Milgram, M., Poulenard, R. "Multi-Class Vehicle Type Recognition System.", Artificial Neural Networks in Pattern Recogni-tion, Lecture Notes in Computer Science, pp. 228–239, Springer Berlin Heidelberg, 2008. [DOI:10.1007/978-3-540-69939-2_22]
12. [12] Huang, H., Zhao, Q., Jia, Y., Tang, S. "A 2DLDA Based Algorithm for Real Time Vehicle Type Recognition.", 11th International IEEE Confer-ence on Intelligent Transportation Systems, pp. 298–303, 2008. [DOI:10.1109/ITSC.2008.4732559]
13. [13] Pearce, G., Pears, N. "Automatic Make and Model Recognition from Frontal Images of Cars.", 8th IEEE International Conference on Advanced Video and Signal Based Surveillance, pp. 373–378, 2011. [DOI:10.1109/AVSS.2011.6027353]
14. [14] Saravi, S., Edirisinghe, E. a. "Vehicle Make and Model Recognition in CCTV Footage.", 18th International Conference on Digital Signal Processing, pp. 1–6, 2013. [DOI:10.1109/ICDSP.2013.6622720]
15. [15] Lowe, D.G. "Object Recognition from Local Scale-Invariant Features.", 17th IEEE Interna-tional Conference on Computer Vision, pp. 1150–1157, 1999. [DOI:10.1109/ICCV.1999.790410]
16. [16] Petrovic, V., Cootes, T. "Analysis of Features for Rigid Structure Vehicle Type Recognition.", British Machine Vision Conference, pp. 587–596, 2004. [DOI:10.5244/C.18.61]
17. [17] Munroe, D.T., Madden, M.G. "Multi-Class and Single-Class Classification Approaches to Veh-icle Model Recognition from Images.", AICS '05, pp. 93–102, 2005.
18. [18] Kazemi, F.M., Samadi, S., Poorreza, H.R., Akbarzadeh-T, M.-R. "Vehicle Recognition Us-ing Curvelet Transform and SVM.", 4th Interna-tional Conference on Information Techno-logy, pp. 516–521, 2007.
19. [19] Zafar, I., Edirisinghe, E. a., Acar, B.S. "Localised Contourlet Features in Vehicle Make and Model Recognition.", Image Processing: Machine Vision Applications II, Proc. of SPIE-IS&T Electronic Imaging, pp. 725105–725115, 2009.
20. [20] Hsieh, J.-W., Chen, L.-C., Chen, D.-Y. "Symmetrical SURF and Its Applications to Vehicle Detection and Vehicle Make and Model Recognition.", IEEE Transactions on Intelligent Transportation Systems., vol. 15, no. 1, pp. 6–20, 2014. [DOI:10.1109/TITS.2013.2294646]
21. [21] Nazemi, A., Shafiee, M., Azimifar, Z. "On Road Vehicle Make and Model Recognition via Sparse Feature Coding.", 8th Iranian Conference on Machine Vision and Image Processing, pp. 436–440, 2013. [DOI:10.1109/IranianMVIP.2013.6780025]
22. [22] Baran, R., Glowacz, A., Matiolanski, A. "The Efficient Real- and Non-Real-Time Make and Model Recognition of Cars.", Multimedia Tools and Applications., no. June, pp. 1–20, 2013.
23. [23] Gao, Y., Lee, H.J. "Moving Car Detection and Model Recognition Based on Deep Learning.", Advanced Science and Technology Letters., vol. 90, no. Multimedia, pp. 57–61, 2015. [DOI:10.14257/astl.2015.90.13]
24. [24] Siddiqui, A.J.A.M., Boukerche, A. "Towards Efficient Vehicle Classification in Intelligent Transportation Systems.", Proceedings of the 5th ACM Symposium on Development and Analysis of Intelligent Vehicular Networks and Applications, pp. 19–25, 2015. [DOI:10.1145/2815347.2815354]
25. [25] Psyllos, A. "Vehicle Logo Recognition Using a SIFT-Based Enhanced Matching Scheme.", Intelligent Transportation Systems, IEEE Transactions on., vol. 11, no. 2, pp. 322–328, 2010. [DOI:10.1109/TITS.2010.2042714]
26. [26] Yang, H., Zhai, L., Liu, Z., Li, L., Luo, Y., Wang, Y., Lai, H., Guan, M. "An Efficient Method for Vehicle Model Identification via Logo Recognition.", International Conference on Computational and Information Sciences, pp. 1080–1083, 2013. [DOI:10.1109/ICCIS.2013.287]
27. [27] Santos, D., Correia, P.L. "Car Recognition Based on Back Lights and Rear View Features.", 10th International Workshop on Image Analysis for Multimedia Interactive Services, pp. 137–140, 2009. [DOI:10.1109/WIAMIS.2009.5031451]
28. [28] Sarfraz, M.S., Saeed, A., Khan, M.H., Riaz, Z. "Bayesian Prior Models for Vehicle Make and Model Recognition.", Proceedings of the 6th International Conference on Frontiers of Information Technology - FIT '09, p. 6, ACM Press, New York, New York, USA, 2009. [DOI:10.1145/1838002.1838041]
29. [29] Psyllos, A., Anagnostopoulos, C.N., Kayafas, E., Loumos, V. "Image Processing & Artificial Neural Networks for Vehicle Make and Model Recognition.", 10th international conference on applications of advanced technologies in transportation, pp. 4229–4243, 2008.
30. [30] Llorca, D., Colas, D., Daza, I. "Vehicle Model Recognition Using Geometry and Appearance of Car Emblems from Rear View Images.", 17th IEEE International Conference on Intelligent Transportation Systems, pp. 3094–3099, 2014. [DOI:10.1109/ITSC.2014.6958187]
31. [31] Dalal, N., Triggs, B. "Histograms of Oriented Gradients for Human Detection.", IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 886–893, 2005. [DOI:10.1109/CVPR.2005.177]
32. [32] Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D. "Object Detection with Discriminatively Trained Part-Based Models.", IEEE transactions on pattern analysis and machine intelligence., vol. 32, no. 9, pp. 1627–45, 2010. [DOI:10.1109/TPAMI.2009.167] [PMID]
33. [33] Lampert, C., Nickisch, H., Harmeling, S. "Attribute-Based Classification for Zero-Shot Learning of Object Categories.", IEEE Transac-tions on Pattern Analysis and Machine Intellig-ence., vol. 36, no. 3, pp. 453 – 465, 2014. [DOI:10.1109/TPAMI.2013.140] [PMID]
34. [34] Felzenszwalb, P.F., Huttenlocher, D.P. "Pictorial Structures for Object Recognition.", International Journal of Computer Vision., vol. 61, no. 1, pp. 55–79, 2005. [DOI:10.1023/B:VISI.0000042934.15159.49]
35. [35] Fergus, R., Perona, P., Zisserman, A. "Object Class Recognition by Unsupervised Scale-Invar-iant Learning.", IEEE Conference on Computer Vision and Pattern Recognition, pp. 264–271, 2003.
36. [36] Weber, M., Welling, M., Perona, P. "Towards Automatic Discovery of Object Categories.", IEEE Conference on Computer Vision and Pattern Recognition, pp. 101–108, 2000. [DOI:10.1109/CVPR.2000.854754]
37. [37] Yang, L., Luo, P., Loy, C.C., Tang, X. "A Large-Scale Car Dataset for Fine-Grained Categoriza-tion and Verification.", Proc. IEEE Conference on Computer Vision and Pattern Recognition., vol. 1, pp. 3973–3981, 2015.
38. [38] "NTOU-MMR Dataset," http://mmplab.cs.ntou.e-du.tw/mmplab/MMR/MMR.html (Accessed: 8 July 2016).
39. [39] "The PASCAL Visual Object Classes," [Online] 2008, http://pascallin.ecs.soton.ac.uk/challeng-es/VOC/ (Accessed: 10 March 2015).
40. [40] Chang, C., Lin, C. "LIBSVM : A Library for Support Vector Machines.", ACM Transactions on Intelligent Systems and Technology., vol. 2, no. 3, pp. 1–27, 2011. [DOI:10.1145/1961189.1961199]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA code

ارسال پیام به نویسنده مسئول


کلیه حقوق این وب سایت متعلق به فصل‌نامة علمی - پژوهشی پردازش علائم و داده‌ها می باشد.